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telegraphists equations are derived. It is shown how these coupled equations
are solved using a second order iterative approach and the juaicious use of a
local coordinate system that conforms with features of the rough surface.
Explicit expressions for the scattered radiation fields and the like and cross
polarized scattering cross sections are also presented. Thus the reader finds
in this section a convenient review of all the background material that leads up
to the general full wave expressions for the scattering cross sections. «¢- ~

It was shown that the stationary phase approximation of the full wave solu-
tion is precisely equal to the physical optics solution for scattering by rough
surfaces. Thus, if the principal contributions to the scattered fields come
from the regions around specular points of the rough surface, at high frequen-
cles, the physical optics approximations are valid. On the other hand, if the
principal contributions to the scattered fields do not come from specular points
of the rough surface, the physical optics solutions are not valid even if the
surface meets the radii of curvature criteria associated with the Xirchhoff ap-
proximations for the surface fields. Similarly it was shown that if the scale
of the surface roughness and the slopes are small, the full wave solutions re-
duce precisely to the perturbation solution for the scattered fields. Thus the
full wave solutions which account ‘for both specular point scattering as well as
Bragg scattering in a uniform self-consistent manner, resolve the apparent dis-
crepancies between the physical optics and perturbation theories. Since at near
normal incidence the backscattered fields are primarily due to specular point
scattering while the backscattered fields near grazing incidence are primarily
due to Bragg scattering, a two-scale model "mostly based on physical considera-
tions" was advanced. These composite models are able to explain features in
radar cross section that no theory can. A problem which is directly associated
with the two-scile model of the composite rough surface concerns the specifica-
tion of the wavenumber k, where spectral splitting between the large and small
scale surfaces is assumed to occur. Furthermore, the two-scale model of the
composite surface is restricted by the assumption that the large and small sur-
face heights h, and h_ are ststistically independent. In order to examine the
earlier results based on the two-scale models of composite surfaces, the full
wave approach (which accounts for both specular point scattering as well as
Bragg scattering in a uniform self-consigtent manner) is also applied to the twod
scale model. Thus in Sections 2 and 3 of this report the composite surface is
decomposed into a large and small scale surface.

In Section 4 the full wave approach is used to determine the scattering
cross sections without assuming the two-scale model of the surface. Thus in thig
case the problems associated with the specifications of k, do not arise and it
is necessary to assume that the large and small scale sutgaces are statistically
independent. Using the full wave approach specular point scattering and Bragg
scattering are not artificially separated out in the expressions for the scattery
ing cross sections.

It is shown that while the values for the like polarized backscatter cross
sections obtained from the unified and two-scale versions of the full wave solu-
tions are in substantial agreement for all angles of incidence, there are very
significant differences between the values of the cross polarized backscatter
cross sections obtained from the uniform and two-scale models of the rough sur-
face. This is shown to be primarily because the physical optics solutions for
the cross-polarized backscatter cross sections vanish. However, as is shown
through the use of the unified full wave approasch, only at the specular points
of the rough surface 1s there no depolarization of the backscattered fields.
Thus a two-scale model based on a perturbed-physical optics approach should not
be used to determine the cross polarized scattering cross sections.

In Section 5 a summary of the proposed research for the next six months is

presented and suggestions for future investigations are also listed.
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1.0 INTRODUCTION

In the first Annual Technical Report (March 1, 1981-~February 28, 1982),

the principal elements of the full wave approach and its relatiomship to
earlier solutions of scattering problems were summarized.

. It was shown that the stationary phase approximation of the full wave
solution 1is precisely equal to the physical optics solution for scattering
by rough surfacegs. Thus if the principal contributions to the scattered
fields come from the regions around specular points of the rough surface,
at high frequencies, k§<h2> >> 1, (kO -electromagnetic wave number, <h2>
-mean square height), the physical optics approximations are valid. On
the other hand if the principal contributions to the scattered fields do
not come from specular points of the rough surface, the physical optics
solutions are not valid even if the surface meets the radii of curvature
criteria associated with the Kirchhoff approximations for the surface fields.

Similarly it was shown that if the scale of the surface roughness is

2

small (k§<h > << 1) and the slopes of the rough surface are small, the full

wave solutions reduce precisely to the perturbation solution for the

scattered fields (Rice, 1951).

Thus the full wave solutions which account for both specular point
scattering as well as Bragg scattering in a uniform self-consistent manner
resolve the apparent discrepancies between the physical optics and

. perturbation theories.

In an attempt to account for the fact that at near normal incidence
the backscattered fields are primarily due to specular point scattering
while the backscattered fields near grazing incidence are primarily due to
Bragg scattering, a two-scale model "mostly based on physical considerations"

was advanced (Wright, 1968; Valenzuela, 1968). These composite models are
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able to explain features in radar cross section that no theory can. More
recently Brown (1978) used a combination of Burrows' perturbation theory
and physical optics to show that the scattering cross sections for rough
surfaces can be expressed as a sum of two cross sections; one associated
with the filtered surface consisting of the large scale spectral components
of the surface and the second associated with the surface consisting of
the small scale spectral components. The results of Valenzuela (based
on physical considerations) and those of Brown (based on a perturbed
physical optics approach) are in agreement provided that the mean square
slope of the rough surface is small.

On applying the full wave approach to the two-scale model of the
composite surface it was shown that the scattering cross sections can be
expressed as a weighted sum of two cross sections. It was also shown that
the difference between Valenzuela's solution and Brown's solution for the
scattering cross sections is primarily due to the fact that in Valenzuela's
work the small scale surface height is measured perpendicular to the
large scale surface and that the correlation distance for the small scale
surface depends on distances measured along the large scale surface.

On the other hand in Brown's work the small scale surface height is
measured perpendicular to the mean, reference surface and the correlation
distance is measured in the mean,reference plane. This is contrary to
Burrows' perturbation formulation upon which Brown's analysis is based.

A problem which is directly associated with the two-scale model of
the composite rough surface concerns the specification of the wavenumber kd
where spectral splitting between the large and small scale surfaces is

assumed to occur (Brown, 1978). Using Brown's approach kd is specified

NN
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on the basis of the features of the small scale surface hs; namely

B = 4k§<h§>. It is shown that Brown's results for the scattering cross

sections critically depend on the value chosen for 8. Since, using Brown's

A ‘ theory, the small scale surface must satisfy the perturbation criteria,

> Brown suggests that kd should be chosen subject to the condition 8 = 0.1.
) On the other hand Hagfors (1966) and Tyler (1976) suggest that for near normal

: incidence the specification of kd should be based on the characteristics

N of the large scale surface since the large scale surface must satisfy the

1: radii of curvature criteria associated with the Kirchhoff approximations

i of the surface fields,

; In addition to the above problems associated with the specification

~ of kd’ it should be noted that the two-scale model of the composite

? surface is restricted by the assumption that the large and small surface

) heights hl and hs are statistically independent (Brown, 1978). In order

i to examine the earlier results based on the two-scale models of composite

: surfaces the full wave approach (which accounts for both specular point

: scattering as well as Bragg scattering in a uniform self-consistent manner)

- is also applied to the two-scale model. Thus in Sections 2 and 3 of this

Vi report the composite surface is decomposed into a large and small scale

p! surface. However, the value of B (which directly specifies kd) is allowed

‘: to vary from 0.1 to 2.0 since use of the full wave approach imposes no

': restriction on the specification of kd. Thus assuming that the surface

J “ height spectral density function (or its Fourier transform the surface

E height autocorrelation function) is known, the value of kd (where spectral

5 splitting is assumed to occur) is determined by its relationship to

’.
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o
W(k) corresponding to the filtered large scale surface hF (k < kd) is

B = 4k

h§> (see Section 3). The portion of the spectral density function

used to determine the mean square slope of the large scale surface hF‘
This in turn determines the probability density function for the large
scale surface slopes since the random surface height is assumed to comprise
a superposition of a sufficiently large number of zero mean independent
component heights such that the surface height and all of its derivatives
are Gaussian (Brown 1978). Thus all the data needed to compute the
scattering cross sections (based on the two-scale model) can be obtained
from the surface height spectral density function or the corresponding
surface height autocorrelation function (see Sections 2 and 3). It is
shown that for values of B between one and two the scattering cross
sections based on the full wave solutions are practically insensitive to
variations in kd' For these values of B the filtered surface hF satisfies
the radii of curvature criteria as well as the criteria for deep phase
modulation (see Sections 2 and 3). However, the perturbed-physical optics
approach cannot be used for g > 0.1 (Brown, 1978).

In Section 4 the full wave approach is used to determine the scattering
cross sections without assuming the two-scale model of the surface. Thus
in this case the problems associated with the specifications of kd do not
arise and it is not necessary to assume that the large and small scale
surfaces are statistically independent (Brown, 1978). Thus using the full

wave approach specular point scattering and Bragg scattering are not

artificially separated out in the expressions for the scattering cross

sections.
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‘- It is shown in Section 4 that while the values for the like polarized

backscatter cross sections (<cvv>and <0HH>)obtained from the unified and two

RALNER

scale versions of the full wave solutions are in substantial agreement for

LR WA

all angles of incidence, there are vary significant differences between the

values of the cross polarized backscatter cross sections obtained from the

.- unified and two-scale models of the rough surface. This is shown to be

X primarily because the physical optics solutions for the cross-polarized back-
scatter cross sections (associated with the filtered surface hF) vanish (see

e Section 4). However, as is shown through the use of the unified full wave

- approach, only at the specular points of the rough surface ig there

depolarization of the backscattered fields. Thus no matter how one chooses

. kd (the wavenumber where spectral splitting is assumed to occur) a two

) scale model based on a perturbed-physical optics approach should not be

used to determine the cross polarized scattering cross sections.

For the convenience of the reader of this report, all the principal

AN

analy .1cal results leading to full wave expressions for the normalized
cross sections are presented in Section (1.1). Thus, starting with Maxwell's

equations for the transverse components of the electromagnetic fields, the

2% 200

boundary conditions, the expressions for the complete field expansions and
the associated orthogonal relations, the generalized telegraphists equa-

tions are derived. It is shown how these coupled equations are solved

] WA
A

. using a second order iterative approach and the judicious use of a local
coordinate system that conforms with features of the rough surface. Expli-

cit expressions for the scattered radiation fields and the like and cross

'_it_;”a

»

polarized scattering cross sections are also presented in this section.
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“on Thus the reader finds in this section a convenient review of all the back-
{ ground material that leads up to the general full wave expressions for the
scattering cross sections.

; In Section(1.2) the technical reports and publications resulting from
] this Air Force Contract are listed. In Section 5 a summary of the pro-

~. posed research for the next six months is presented and suggestions for

. future investigations are also listed.
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1.1 Summary of Research

In this section the principal steps leading to the derivation of
the full wave solutions for the scattering cross sections for random
rough surfaces are summarized. The complex electromagnetic parameters
of the media above and below the irregular boundary y = h(x) are (see

Fig. 1.1
50’ y > h(x) UO

e=¢, —1le, =g, ~"—-= , U = (1.1)
El, y < h(X) u

in which ERs Ep» and the conductivity ¢ are real and an exp(iwt) time
dependence is assumed.

In this work it is assumed that the complex permittivity e and
permeability u are not functions of x. Thus wave scattering is only due
to the irregular boundary between the two half spaces y > h(x) (medium O0)
and y < h(x) (medium 1). Since it is convenient to represent electric
current loops by magnetic dipoles, both electric and magnetic sources J
and M are assumed to be present. Maxwell's equations for the transverse

electric and magnetic fields, E. and ﬁT respectively, are (Bahar 1973a,b)

T
aET L 1 L
= - lew(Hp xa) - g= Ve (Hy x a))
+M xa +——VJ 1.2)
MT X ive T x
and _
2 _ 1 _
- —5x - dwe(a, x Ep) - o VoVt (3, x Ep)
+a xJ. F#-—UM (1.3)
X T iwpy T x’
in which the operator VT is given by
- 9 - 9
VT ay 3y +a o (1.4)
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and the transverse vectors are
AT = ayAy + azAz, A=EH,JorM (1.5)
The following field transform pairs provide the basis for the complete

expansion of the transverse electric and magnetic fields into vertically

and horizontally polarized waves:

B (0y,2) = § L0 [E (xyv,wéy + EGx,v,mehldw, (1.6)
where

EP(x,v,w) - {: ﬁT(x,y,z)o(Fg -§x)dydz, P=V or H, 1.7

= © ¥ - H =

Hp(x,y,2) = L [, (n (x,v,W)h;{ + H (x,v,W)hgldW. (1.8)
where

HP(x,v,w) = [: ﬁT(x,y,z)-(;x X Eg)dydz, P=V or H, (1.9)

The basis functions for the vertically polarized waves are

vV _ V-V a v Vo
e, =2 (ay (v,y) - M) §(w, 2) (1.10)
T y u2 + w2 Ay
and
By = 3% (V,y)(w,2) (1.11)

and the complementary basis functions for the vertically polarized waves

are

_ V- v a_iw v
e3 - 2’ G v,y + —2-2——531——(%;;‘1—)-)¢°(w,z) (1.12)
u +w
and
Eg = EZNVwV(v,y)¢°(w,z) : (1.13)

For the horizontally polarized waves, the basis functions and the complementary
basis functions are respectively

ey = A (v, e, (1.14)

- T O N I R G S ST o LA SR
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. '..:
t‘:";‘- =H _ H, - H 8 v 2y (v, y)
| B = Y (- a ¥ (v,y) + 122)6 (w,2) (1.15)
L T y 2 2 dy
u +w
e and
2 o = 3 N (v, )6 w,2) (1.16)
\..
\-‘ -
et a_iw H
oS = - 0
he = Y- 3 vy) - oy 2 LY)) 0 (0,0 (1.17)
Y u +w y P P
5\: in which NP are normalization coefficients (1.31), 2° and Y are given by (1.32)
Pr . and c
AR ¢ (w,z) = exp(-iwz) and ¢ (w,2) = (1/2n)exp(iwz) . (1.18)
o
The scalar basis functions ‘PI;(V:Y) are
20 h, P
L . h .
‘::.{. exp(ivyy) + Ry (v)exp(-ivgy), y 2 h
w -
LS _ .
P exp[:[v1 (y h)]exp(lvoh)TPO(v), y <h (1.19)
K22 h, P
-.\.' exp[-ivo(y—h)]exp(-ivlh)Tpl(v) y>h
-~ =
o h .
Y exp(-ivly) + RPl(V)exp(lvly) y<h (1.20)
%y
- and
. exp[—ivos(y-h)], y>h
M P P
Vo(w,y) = ¥ (v,h)
::i exp[ivls(y—h)]. y<h, (1.21)
z:::v
<. " in which the reflection coefficients with respect to the reference plane
‘4'::: y = 0 (see Fig. 1.1) are
<
. h P h P
::_. RPO = RlO exp(inOh) RPl = ROl exp(-i2v1h) (1.22)
L where RP = -RP are the Fresnel reflection coefficients
N 10 01
b
..
*I
-"_:
MY
3
o
N
A
'1‘?.;\:;'."~.;:'\"-:'.1-;:";‘-',:~"*-'.-;\"-."\;f".' NN NN T o N N e S L e e e "o
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29 p
Y C,~ C.K
o
% Rip(¥) = Rjp(Cp) = 5—
: C +C.K
. 1
~° = =
: Vo = %G > V1 " G
fj and n1/n0 ’ P=v
.« K = _
. no/ny o P=H . (1.23)
‘:ﬂ The intrinsic impedance for medium m is Nm = (um/em)%. Furthermore
3;3 in (1.19) and (1.20)
&
T . =1+R and T_ =1 +R. (1.24)
- PO . 10 Pl 01 :
;% are the transmission coefficients and wz(v,h) is the value of the surface
L~ .
> wave basis function at the boundary y = h. For a homogeneous model of
P conducting ground the surface wave exists for the vertically polarized
v
:; waves only. The superscripts or subscripts V and H are used to denote
<
\ U
‘ﬁ vertically or horizontally polarized waves. The symbol Ev denotes the
’ summation (integration) over the entire wavenumber spectrum v consisting
3: of the radiation term (0 < Yo < =), the lateral wave term (0 < vy < ),
"
\: and the guided surface wave term Vg For i =0Qor1l
X v, = (k2 - u2 - WZ)%, Im(v,) < O (1.25)
Ry i i i’ =
»
:: and for the surface wave term Vie is a solution of the modal equation
*
?‘ P P
"‘v
e The wavenumber for medium i = 0, 1 is
:::f Y
;; ki = w(uiei) . (1.27)
- The basis functions satisfy the biorthogonal relationships for P and Q equal
0N
3: toVor H
.‘x
-;:
e
%
-
v,
o,
~,
.

Lt i)

N L SO AN N
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’}5 mP T
o (h - '
}. er (hQ x ax) dydz
e b = 3 A(v=v')a(w=w"')
; - p,Qd (V= ")a(
. Q oln =Ty,
»f hT (ax X eP) dydz
- )
o J (1.28)
- in which, for the primed quantities the variables are u',v', and w' and
. A(v-v') = §
( ) 9
‘-, S(v=v'), v'#v
R x
“ 6 ,
2 VaV,, vi=v_ . (1.29)
\ The subscripts q,r are equal to O, 1 or s for the radiation,lateral wave and
W]
S surface wave terms, respectively, and 6§ (a-B) and Ga g are the Dirac delta
a ’
. function and Kronecker delta, -espectively. The completeness relationship is
- P P
§(y-y) = = 1¥ & vF(v,vf v,y
e 0 v 0
N, (P P P
3 0
~ G
N P P P P
~ + I Nl Wl(V.Y)wl(Vg}'o)dvl
J
0
¢
. P _P P P
: + 1 N ws(v,y)ws(v,yo) (1.30)
j The scalar basis functions for the radiation fields, and the lateral and surface
X waves are wg, wf, and wz, respectively. The corresponding normalization
>
: coefficients are
; P
* Ns(v) =1, N (v) = RPj/ZﬂI ), j=0,1, (1.31)
o
y in which 1§ are the transverse wave impedances or admittances., For j=0,1
2
y
o

'..v' o A T

N AT T N W T N - A T e e e ._
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= 4
: I r
Q . u2 + w H
. oon = Yo )
{ H u +w 0
_ Y. (v) )
b uwp

i ! u2 + w2 H
; \ ——;;:I—-S Yl(v) (1.32)
g Thus in the above expressions for I§ (which are independent of y), the

parameters for medium 0 are used for the radiation term, and the parameters

for medium 1 are used for the lateral wave term. On the other hand IP(v,y)

(o2 \L ot e

which is a function of y is given by

A \'
.4 Z0 ,y>h
5 zv( y =4V
-°.: P v,y zl t4 y < h
i I (v,y) =«
H
5 H Yp»y>h
': Y (VsY) - H
Y, .y« h . (1.33)

¥ \

The irregular boundary and its gradient are assumed here to be continuous

: functions of x only. Thus the exact boundary conditions at y = h(x) can be
W
< expressed exclusively in terms of the transverse field components
o

u +
. 1 = =y o dh h
. iwe 'T (HT X ax) Ey dx h ?%z}h- 0 (1.34)
_: L n

- + 1

h +
1 - = dh h

? Tou VT (ax x ET) - - Hy I _,[%;] ) 0. (1.35)
2 h h
: The complete field expansions are substituted into Maxwell's equations

for the transverse field components and use is made of the orthogonality

Bl %, L
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e Y
.:{ relationship, Green's theorem, and the exact boundary conditions, to obtain
;’.

: the differential equations for the field transforms EP and HP. These may
_:t be expressed in terms of the forward and backward wave amplitudes aP and bP,
‘:: respectively, as follows:

_ V, {upper sign
- HP = aP + bP and EP = aP + bP s, P =
’
:{ H, |lower sign (1.36)
:EZ Thus Maxwell's equations are converted into the following generalized
& telegraphists equations for P=V or H (Bahar, 1973a,b)
4
.\' P
o _da _ P_ BA Q BB Q.. , _ ,P
> 5y = lua 5 é'f(qu a®+ Sp, b Ydw' - A", (1.37a)
b
B and
P

e db P AA Q AB . Q P
" - £ = LIS ' .

- ' + iub qv' (SPQ a* + SPQ b%)dw' + B . (1.37b)

f The transmission scattering coefficients for the radiation fields are given
) by (Bahar, 1973b)

: N

: (v)

N B, = 3 [ BBy | 1w PevLE, ofs (1.38a)
¥ %)

\ where %

A E%—fexp[i(w-w')z]dz = I(w,w') > §(w-w")

E -2

A for 2 + = and
e No (v)

i S2Bv,vt) = - SR = - 2 G v,y IGw,u') (1.39)
N.(v")

~ 0

- The reflection scattering coefficients for the radiation fields are

- P

. N.(v)

% s23(v,v") = 1 |52 — B!, w) + CE(v, v | TG (1.40)
% [] P P

3 Np (v')

:; and

< aa ao Ng(V) 1l Vv
7.2 S (vyv') = 8 " (v',v) ——— = =C_ (v,v') I(w,w") (1.41)
i HV VH Nv(v') 2 H

X 0
%

-,
e

.

':ﬁ.;f,;qf;f Ny 'I-:-"{J‘;(s'u‘,;o’& X f."(;,-; ¢ ,_'..-‘ -'__-\_ .V . B i S K I




The coupling coefficients C; are given by

P ] 2
P,y oy L (DN eD (P S
CP(V sv) v'z- vz Lwo(V:Y) 5;5;’¢0(V ,Y)
-h+
3 P 3, P, ,
"3y wo(V.y) a—xw o(v ,y)] ) . (1.42)
h

On employing the properties of the scalar basis function wo, it can

be shown that (1.42) reduces to

P '
CP(v' v) = I-I (V’Y)Ng(v ‘ v'2 P(v ) P(v' )
PV A VoV uglvisy
+ 2 Py 2 P )] b (1.43)
Ay Wo ‘ 4 3y ‘po %4 . . "
h
Similarly, it can be shown that
v, v) = iw—N;—(l—) v,y == vy
H ’ au’ 0 'y 3x wo 4
P S ) O i g
k2 3y ‘o VY 3xdy Volv sy
2. 2 nt
yah(urwl) o wg(v.y) wg(v'.y) . (1.44)
dx k2 3y -

Thus on using the properties of the scalar basis function wo,

ing(v') dh

\'j
CH(V' ’¥) uu' dx

3
-[3; “‘X(v,y)“’g(v'.y) - ‘VX(V.y)
+
H,
¢ _3-3- ‘PO(V ’Y) ]

h
wN‘H(v')
0 dh |V H
au a’; wo(vyh)wo(V'Qh)

ofv! 1 = —| = v, [1 -—]]. (1.45)
[1 [ My 1 €

h
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‘-
. Since excitations of vertically and horizontally polarized waves
L} (with respect to the reference (x,z) plane) are considered, both vertical
:2 electric and magnetic dipoles located at r= ;i = xigx + yi;y + zi;z = —riﬁi
& are treated in this analysis. Thus for vertical electric and magnetic dipoles of
v intensity J and M respectively the source terms AP and BP appearing in (1.37)
g are given by AV(V) . Bv(v)

2 = -3Zg (DN Wy (vay)
A; . exp(iwzi)s(x-xi)/dﬂ s (1.46)

é Ay = Bw)

. = MYg(V)Ng(v)wg(v,yi)

)

; . exp(iwzi)a(x-xi)/An (1.47)

¢
{f The first-order iterative solutions for the wave amplitudes aP and bP
i. are obtained by neglecting the transmission and reflection scattering
§S coefficients in (1.37). These first-order solutions are substituted on

: the right side of (1.37), and the resulting equations are solved to obtain

> the second~-order iterative solution for the wave amplitudes. These
‘S second-order iterative solutions are used in the complete expansions
:: for the electromagnetic fields to obtain the desired iterative solutions

f for the scattered radiation fields through the use of the steepest

E descent method. Thus the first-order solutions to (1.37) are the unperturbed
E vertically and horizontally polarized fields excited by the vertical electric
: and magnetic dipoles respectively. The second-order iterative solutions

'; which account for depolarization and scattering in arbitrary directions

'; are suitable when multiple scattering can be ignored. Thus for x > xi

} the unperturbed wave amplitude excited by a vertical electric dipole of

i intensity J (amp-meter) is

.
R R I L ST PO DAL S IR A T SCTRR P R . -
VAN AT AT A PO R (RS e e

T R I A N S AL LS S R R
(] [ ) .
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‘:::' av(xav’w) - Hv(xxva)
“ X 1AVt '
‘ = exp(-iux) S exp(iux')A (x')dx
KN,
o - —1u (x~ v
.:{‘: exp[-1u(x xi)]A0 . (1.48)
'{::' ‘ where
- V_=J V.V =

. Ao = 7n WMo ¥o ¢ 1zt (1-49)

B
) and .
WA - )

Ax ¢(w,z) = exp(+iwz) (1.50)
- Substitute (1.48) into (1.8) to obtain the unperturbed magnetic field
:s ﬁT(x,y,z). Thus .o ;

+ H, (x,y,2z) = J J H (x,v,w)wo(v,y)a(w,z)dvodw. (1.51)
3

A - 0

, Noting that

-,
v v

2 (/R0 1= (B, (1.52)
. 0

. it can be shown that for y > h and yi > h, (1.51) can be written as

R e

- " v -

‘._j Hz(x,y,z) 2 J J Rvowo exp[ i(ux + wz)]

) 8r
e Ny w00 = 00
. . exp[i(ux:l +wzt - voyiﬂdvodw . (1.53)
'-\. b
(o o
f:;. When the vertical electric dipole is far from the rough surface (kri >> 1)
.:'..
— the steepest descent method is used to evaluate (1.53) (Brekhovskikh, 1960).
::;:_ u= kosineo cosd, v0 = kocoseo,
j:';’: W= kosineo sin¢ (1.54a)
- xi = -risineé cos¢i, yi _— coseé,
:’-Zf and 2z = —risine; sing (1.54b)
~
4

.

&

:j and X =71 smef) cosi»f, y=r coseg , and
. zZ=7x sineg s:l.nd’f . (1.54¢)
e

3
-':-v
4'.}

<
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It can be shown that the unperturbed magnetic field near the boundary y = h,

is given by

- i

H (x,y,2) = iq exp(-ik.r™)
z i 0
4nr
. [uRs wv exp - i(ux + wz) ] (1.55)
0'0 Qi

in which 60 and ¢ are replaced by 63 and ¢1 in the expressions for u, v,

and w, and Qi(ei,¢i) is the direction of the incident waves from the vertical
dipole. Hence the azimuthal component of the incident unperturbed magnetic
field at the origin is

Hi = - H:/cos¢ = ik

i
J sin@
¢

0 exp(-ikoti)/Awri. (1.56)

0

To obtain the radiation field,transform use is made of (1.9). On
integrating with respect to y and z and using the biorthogonal relationship
(1.28) we obtain

Hv(x,v,w) = Hikso(vi)exp(-iuix)
8 (w-w")§ (v-v1)
= a; exp(-1u'x) 6 (v (o) = a7 (x,v,w) (1.57)

where 2% is the dimension of the surface in the z-direction (-2 < z < ).
Thus for a vertical electric dipole at a large distance from the rough surface,
the unperturbed field transform is represented by a Dirac delta function.

To obtain the second-order iterative solution that accounts for wave
scattering,(1,57) is substituted on the right-hand side of the coupled
differential equations for the wave amplitude av(x,v,w). The resulting differ-

ential equation for the vertically polarized forward scattered wave amplitude

is integrated to yield




..... CRS A A MY S A S DA AR N A SEEE Bl AR S AN ARG R AN I RN N N e AR o

PO Y

P A

0
s

R

; “:&—'rﬁ.“- 4

INTRENTA oL

l.‘
.

§ A

"y ;', F i ‘:‘,;'_ :

(Rl

Y | Ak

a4

*RL°,

A e %a
.

o,

“« e

19
X
av(x,v,w) = ~exp(-iux) j SSé(v,vi)
i i1, 4,
* aj exp i(u-u)x"dx . (1.58)

A similar expression can be derived for the back scattered wave amplitude.
For an irregular boundary of dimension 2L in the x-direction, y = h(x)

(-L < x < L), the forward scattered wave amplitude can be expressed as follows

a’ (x,v,w) = -M(a,ab) e—"Lé'-i—‘i‘—’z‘-)-
u -u

L

. J % exp i[ (u-ul)x + (vowé)h]dx : (1.59)

-L
Integrate (1.59) by parts to obtain the total (specular and non-specular)

scattered wave amplitude (assuming that koL >> 1),

Hv(x,v,w) = av(x,v,w) = M(Q,Qi)I(Q,Qi,h,L)ZL

+ exp(-tux)/[(uha®) (v+vg) ] (1.60)
where I(Q,Qi,h,L) is given by
L
1@ ,oi,n,L) = -2-11-: J exp{iko[(c(i) + Ch
L
+ (S0 cosp - Sé cos¢i)x]}dx. (1.61)

The forward scattered radiation field is obtained by substituting (1.60) into

(1.51) using the relationships (1.52)

«®

Hz(x,Y.Z) - J J Hv(x,v,w)
. ex;-i(voy + wz)dvo dw
.J J Me,ah1(0,0% 0, L)2L
(u+ui)(v0+vé)

+ exp-i(ux + VoY + wz)dvo dw . (1.62)
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Using (1.54) to express u,v, and w in terms of eo and ¢, and x,y, and z in
terms of eg and ¢f the steepest descent method can be used to evaluate (1.62)

for kor >> 1. Thus it can be shown that

H (x,y,2)
z £ £ 4. f 4
< 2ri u exp(Akr)M(Q ,@)I(Q ,2 ,h,L)2L (1.63)
f i f i ¢
r(u +u )(v0 + vo)

The solutions for the other scattered fieldsare obtained in a similar manner.

Thus the iterative solutions for the vertically and horizontally polarized

scattered radiation fields GPf = EPf = nOHPf can be expressed as follows

\'23 Vv VH Vi
S =gy ratate et TS (1.64)

GHf FHV FHH GHl

in which EVf, EHf and HVf, HHf are vertically and horizontally polarized
components of the scattered electric and magnetic fields, respectively, and

-ik,. 420L
0 f i i
Gy = —F exp[-ikor ] » C, = cosb (1.65)

2nr

The projection of the rough surface in the (x,z) plane is Ay = 412, and the

observation point is at ;f = rn , The expression for the integral I in (1.64)

is

-f -i - 1
I(n",n ,rs,A) = -A—I I
Y oL
-f =i, -
°exp[ik0(n -n )-rs]dx dz (1.66)
in which Ei and Ef are unit vectors in the directions of the incident and the
scattered wave normals in medium y > h, and ;s is the distance from the origin
to points on the rough surface.
For two dimensionally rough surfaces

Es - xa_ + h(x,z)sy + zsz -7 - (y-h)Ey =-r - ny (1.67a)




f(x,y,2) =y - h(x,z) = 0 (1.67b)

is the equation for the rough surface, and the unit vector normal to the

rough surface 1s

n = Vf/|Vvf|
= sinycossﬁx + cosya-{y + siny sinéaz
= (-ha + Ey - hzaz)/(hi +1+ hi);i (1.68a)
where
%% = hx and %% = hz (1.68b)

In order to extend the solution (1.64) to problems of scattering by two-
dimensionally rough surfaces h(x,z) with arbitrary slopes, while preserving
the relatively simple forms of these iterative solutions, the rough surface
is regarded as a continuum of elementary surfaces of varying slope and
height rather than a continuum of horizontal elementary surfaces of varying
height. The contribution to the total scattered field from an inclined
elementary surface is obtained from (1.64) after making the appropriate
coordinate transformations. In this way the restrictions on the maximum slope
of the rough surface are removed while preserving all the advantages of
using the full-wave approach.

The contribution to the total scattered field from an elementary horizontal
surfaces at r = ;s of width dx dz can be expressed in matrix form as

acf = G, ds ¢l

is defined in (1.65),ci is the incident field at

(1.69)

in which the constant G0

the origin, and
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|
}:ii ds(x,z) = CiF exp[ik (Ef- ﬁi)-; ldx dz/A
-:,.:. 4 0 P 0 s Yy
e = Cci)F di(x,2) (1.70)
T
.%:f The expression corresponding to dS(x,z) for an elementary surface
:f”ﬁ dA = ﬁdxdz/(ﬁ-;y) = ndxdz/cosy (1.71)
‘,; is given by dC. In matrix notation it is expressed as follows:
SR : -
.:7:::_. C= J J dc = j J con'rfl?(Ef,r‘xi)T1
A
y y
A f ~i = 9, -
A °exp[iko(n -n )-rs]dA-n/Ay (1.72)
}:-'.
Lon
i}f In (1.70) the angles of incidence and scatter with respect to the reference
=
:7 plane (x,z) are replaced by the local angles of incidence and scatter with
a Vel
e 2
ﬁzj respect to the local tangent plane. The the elements of the matrix F
it
“}:: (1.64) are (Bahar, 198la,b)
. in.fn in_.fn fn in, _in_fn fn  in
. :.: irLFW ZCO Co [(urcl Cl COS(¢ "¢ )-So SO )(l-ller)+(1-ur)COS(¢ —¢ )]
o . e ci9) (cFn oy (cirucD
S 0 Me"1 )0 Tev1 /Y0 Tho
:}5 in . f in.f f i in_f fn 1
n.fn n.fn n  in n.fn n  in
) in_HH 2¢, ¢, [(e_C7C  cos(d "-¢ )-8y S 2 (1-1/u )+(1-¢ )cos(¢" -4 )]
(ﬁf C0 = (Cin+cin/ )(Cfn+cfn/ )(Cin+cfn)
N 071 e’ o Tr1 Mo Tro
:;i fn_ in,, in_ fn in_, fn
' in RV -sin(¢ -4 )2C,"C, nr[(l—l/sr)Cl (1-1/u.)¢;"]
' C0 = in in fn, .fn in, .fn
W
‘.
2y
0)
Ak sin(¢F s M 2ci®cin [(-1/u)ctP-(1-1/¢ )ci™]
> CinFVH- 00« r’'’1 r’'’1 (1.73)
>y 0 (Cin4cin/ )(Cfn+ Cfn)(cin+cfn) *
0o 71 Me? e M1 7Moo
:ﬁ: in which the dimensionless quantities NN € and M, are the refractive
-...~
:;: index, relative intrinsic impedance, relative permittivity, and relative
A permeability, respectively

s '-"'.J'.'-."l:‘-'f\'.'f"-‘.'-".'- S

A
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. - b
o np = (eghy/eghy)
i 1
:_: r 1’0 €1/ %o
X
& =
:.. er 51/60
X
N
. M ul/uo (1.74)
‘;:t.: The cosines and sines of the angles of incidence and scatter (with respect
‘: to the local coordinate system) e(i)“ and egn in free space, y > h(x,z), are
) given by (see Fig. 1.2)
% in _ in -1 =
e C0 coseo n + n
% ci® = cosef™ = af. 3 (1.75a)
L, 0 0 :
¥
> én = In X n
o
" (f)n - |af xn (1.75b)
o
v The sines of the corresponding angles in medium 1, y < h(x,z), are given by
» Snell's law
-r\' Sj'n = sinein = Sin/n
" 1 1 0
st = g1nef® = sf%n (1.76)
N 1 1 0
J‘
:‘: Thus
b7s in in in, 2%
L = = []1-
: c, cosd) [1 (577 ]
fn fn fn, 2%
% c; cose) [1—(514) 1% . (1.77)
l...
2 The cosine and sine of the angle between the planes of incidence and scatter
)~
in the local coordinate system are given by
fn in -n _ -n
. = . 1.7
2 cos(¢” —¢7") = a .- a,, (1.78a)
::j' and
~. fn in -
sin(¢ [aHf qy® (1.78b)

o 7 y bt
/ ’l.’k’!.};."’
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(Efx;y)/lﬁf x;yl

e = G /|5 x| (1.79)

and
3, = @ x;ywlﬁi xa |
) a® = @ ay/|at x| (1.80)

ot
The vertically and horizontally polarized components of the incident and
scattered electric and magnetic fields with respect to the local plane normal
to the unit vector n, are denoted by the subscript n. They are related to

the components with respect to the reference plane through the following

transformations
r 3 \N 7 9
EVi Ci Si EVi
in _ | ] .11 v
G = = TG = (1.81)
EHi -Si ci EHi
n v LJAU
and ( ) , N
EVf Cf -Sf EVf
£ £ffn | ¥ viin
G = HEj=T G = | £ £ Hf (1.82)
E S C ||E
() v Vi)
in which Ci and S; are the cosine and sine of the angle between the local

plane of incidence and reference plane of incidence normal to the unit vectors
;;1 and ;Hi’ respectively. Thus they can be expressed in terms of the scalar

product and the scalar triple product

i i_ - -n
C¢ cosy ang aps
' i i - -n -1
Sw siny [aHiaHin (1.83)
Similarly, Ci and Si are the cosine and sine of the angle between the local

plane of scatter and the reference plane of scatter normal to unit vectors

—n -
ape and aues respectively. Thus

.................
.....................



f f - -n
Cw = cosy = anf anf
f b3 - =-n -f
sw = siny” = [a ca .0 ] (1.84)

The full wave solutions for the scattered wave amplitudes can therefore be

expressed as follows in matrix form
f in £ 1
G -GOJCOnTFT
A

+ expliky@'-aY) + T Ju(F ek - et

c,c,ahet (1.85)

In which the shadow function U(;s) is

_ 1 1lluminated and visible region
U(rs) =
0 nonilluminated or nonvisible region (1.86)
The normalized scattering cross section per unit area for rough surfaces is

(shimaru, 1978)
FQ . an(rf)zlnpflz/@ylnqilz] (1.87)

in which Ay is the projection of the area of the rough surface A on the

reference plane normal to ;y' Thus for P,Q=V,H

K2 K2 .
PQ,2 - -
. exp[iko(ﬁf-ai)- (;s-;;)]u(;s)u(;;) dxdy dx'dy' (1.88)

P (n+a Y(n'-a )
where D Q is the element of the matrix y y

D = c(i)“'rfr"'ri (1.89)
and the symbol * denotes the complex conjugate.

For the incoherent, diffuse field the scattering cross section for unit

cross—-sectional area is given by (Ishimaru, 1978)
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<oPQ> = lo'rr(rf)2<]Epf - <Epf>|2>/Ay|EQi|2 (1.90)

in which the symbol < > denotes the statistical average.
Thus the full wave expressions for the normalized scattering cross section

per unit area is

2 PQ -
PQ k0 [%PQ exp{iv (h-h')} - [}D L exp(iv h);]z}
<g V> = —= < y - = y .
1A n°a
y y -
ALA'
. exp[ivx(x-x') + 1vz(z-z')]dxdz dx'dz’ (1.91)
in which
v=k.(-nl) =va +va +va (1.92)
0 X X yy zz
and

¢ . EUE) DPQ*(E')I_J(;') (1.93)

n-a n'-a
y
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1.2 Interim Technical Reports and Publications in Scientific/Technical
Journals

Preprints of the following manuscript "Scattering Cross Sections
for Composite Models of Non-Gaussian Rough Surfaces for Which Decorre-
lation Implies Statistical Independence' were submitted to the contract
monitor for publication as an Interim Technical Report (March 1, 1982-
Nov. 30, 1982),

Abstract of Interim Report

The full wave approach is used to determine the scattering cross
sections for composite models of non-Gaussian rough surfaces. It is
assumed in this work that the rough surface heights become statistically
independent when they decorrelate, thus no delta function type specular
term appears in the expression for the scattered fields. The broad
family of non-Gaussian surfaces considered range in the limit from ex-
ponential to Gaussian. It is seen that for small angles of incidence,
the like polarized cross sections have the same dependence on the
special form of the surface height joint probability density, but for
large angles the scattering cross sections for the horizontally pola-
rized waves are much more sensitive to the special form of the joint
probability density. The corresponding results for the depolarized
backscatter cross section are also presented. The shadow functions
are shown to be rather insensitive to the special form of the joint
probability density.

Preprints of the following manuscripts and conference papers
were submitted to the Office of Public Affairs and project monitor

for review and approval for publication:
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"Propagation of Vertically and Horizontally Polarized Waves Excited
by Distributions of Electric and Magnetic Sources in Irregular
Stratified Spheroidal Structures of Finite Conductivity Generalized
Field Transforms", Canadian Journal of Physics, Vol. 61 No. 1,

pp. 113-127, 1983.

"Scattering and Depolarization of Electromagnetic Waves in Irregular
Stratified Spheroidal Structures of Finite Conductivity--Full Wave
Analysis", Canadian Journal of Physics, Vol. 61 No. 1, pp. 128-

139, 1983.

"Scattering Cross Sections for Composite Surfaces That Cannot Be
Treated as Perturbed-Physical Optics Problems," Radio Science, in
press.

"Computations of Scattering Cross Sections for Composite Surfaces
and the Specification of the Wavenumber Where Spectral Splitting
Occurs", Submitted for review.

"Scattering and Depolarization by Rough Surfaces: Full Wave
Approach", Proceedings of the SPIE International Technical Symposium
of the International Society of Optical Engineering, Vol. 358 No. 28,
pp. 1-14, August, 1982. '

"Comparison of Backscatter Cross Sections for Composite Rough Sur-
faces with Different Mean Square Slopes", International Journal of
Remote Sensing, in press.

"Shadowing by Non-Gaussian Rough Surfaces for Which Decorrelation
Implies Statistical Independence", Radio Science, in press.

Joint International IEEE/APS and National Radio Science Meeting at
the University of New Mexico, May 24-28, 1982, "Scattering Cross
Sections for Composite Surfaces with Large Mean Square Slopes—-
Full Wave Analysis."

The SPIE 26th Annual International Technical Symposium of the
International Society for Optical Engineering, San Diego, Califor-
nia, Aug.23-27, 1982. Title of Invited Paper, "Scattering and
Depolarization by Rough Surfaces."

International IEEE/APS Symposium and National Radio Science Meeting
at the University of Houston, Texas, May 23-26, 1983, "Rough
Surface Scattering that Cannot Be Analyzed Perturbed-~Physical Optics
Approaches."

International IEEE/APS Symposium and National Radio Science Meeting
at the University of Houston, Texas, May 23-26, 1983, "Scattering
Cross Sections for Composite Surfaces and the Wavenumber Where
Spectral Splitting Occurs."”
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2.0 SCATTERING CROSS SECTIONS FOR COMPOSITE SURFACES THAT CANNOT BE
TREATED AS PERTURBED-PHYSICAL OPTICS PROBLEMS

2.1 Background

Perturbation and physical optics theories have traditionally been
used to derive the scattering cross sections for composite surfaces that
can be regarded as small scale surface perturbations that ride on
filtered, large scale surfaces. In this case perturbation theory accounts
for Bragg scattering, while physical optics theory accounts for spec-
ular point scattering. However, for a more general class of composite
surfaces that cannot be decomposed in such a manner, the perturbed-physical
optics approach cannot be used. In these cases, it is shown, using the
full wave approach, that the specular scattering associated with a fil~
tered surface (consisting of the larger-scale spectral components), is
strongly modified, and that Bragg scattering and specular point scatter-
ing begin to blend with each other. Since the full wave solution
accounts for Bragg scattering as well as specular point scattering in
a self-consistent manner, it is not necessary to filter (decompose)
the composite surface to evaluate the scattering cross sections in the
general case. However, filtering the composite surface enhances one's
physical insight as to the validity (or lack thereof) of the perturbed-
physical optics decomposition, and also facilitates the numerical eval-
uation of the scattering cross sections.
2.2 Discussion

In order to account for Bragg scattering as well as specular point
scattering from random rough surfaces, composite models of the surface

with different roughness scales have been considered (Wright 1968,
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Barrick 1970, Barrick and Peake 1968). Thus, for instance, for back-

AR
a4 4 4

scatter more than 30° away from the vertical, it is shown through the

use of perturbation theory (Rice 1951) that Bragg scattering is domin-

o

[}
LN
DY
»

ant and the scattering cross section, which is polarization dependent,
is proportional to the surface height spectral density function. On
the other hand, using physical optics theory (Beckmann 1968), the back
scattering cross section near normal incidence is shown to be primarily
due to specular point scattering and to be independent of polarization.

Using the composite models of Wright (1968), Semyonov (1966) and
Valenzuela (1968) which are "mostly based on physical considerations,"
the rough surface is regarded as patches of slightly rough surfaces
that ride over the large waves. Thus, in their work the scattering
cross section associated with the surface with the small scale roughness
is obtained by averaging over the distribution of slopes of the large
scale roughness, or by averaging over the tilt angles in and perpendic-
ular to the plane of incidence.

More recently Brown (1978, 1980) applied a combination of Burrows'
perturbation theory (1967) and physical optics theory (Beckmann 1968)
to derive the backscattering cross section from a perfectly conducting
two scale model of rough surfaces, The first term in his solution is
the specular point backscattering cross section associated with the
large scale surface height hz and the second term is the Bragg scatter-
ing cross section associated with the small scale surface height hs.
Thus, in his work it is necessary to decompose (i.e., spectrally filter)

the composite surface. To this end, Brown's specification of the

31
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wavenumber kd (where spectral splitting is assumed to occur), is based

entirely upon the characteristics of the small scale structure (Brown
1978). However, in the approaches of Hagfors (1966) and Tyler (1976)
the specifications of k.d (spectral truncation) is assumed to be based
on the characteristics of the large scale surface. In their approaches,
however, they ignore the effects of the surface comprising the small
scale spectral components (k > kd) since their results are not meant to
explain scattering far removed from the specular direction. In addi-
tion, it should be pointed out that even if the spectral components of
the large #cale (filtered) surface satisfy the radii of curvature cri-
teria (associated with the Kirchhoff approximation of the surface
fields), they may not necessarily satisfy the condition for deep phase
modulation implicit in the evaluation of the specular point result
(Barrick 1970).

In order to apply the full wave approach (Bahar 1981 a,b, 1982a,b)
to problems of scattering by rough surfaces, it is not necessary to
decompose (filter) the rough surface into one surface hs with a small
roughness scale, and another with large radii of curvature. However,
when such a decomposition is feasible and the restrictions on both the
large and small scale roughness are satisfied simultaneously, the full
wave solutions for the scattering cross sections (which account for
both Bragg scattering and specular point scattering in a self-consistent
manner), can be expressed in terms of a weighted sum of two cross
sections in agreement with perturbation and physical optics theories.

A comparison between the full wave approach and the approaches of

Brown and Valenzuela has also been made recently for surfaces with

:
;
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moderately large mean square slopes (see Section 2.3).

The major objective of this work is to apply the full wave approach
to composite surfaces which cannot be decomposed into a two scale model
without violating either the small height variance criteria essential
to the application of perturbation theory or the large radii of curva-
ture criteria essential to the application of physical optics theory.
Thus, in Section .3) the principal formulas for the scattering cross
sections are developed for surfaces that do not satisfy either the small
variance or the large radii of curvature restrictions. In Section (2.4)
a composite surface which does not satisfy the physical optics (Kirch-
hoff) criteria is analyzed in detail. To decompose this surface it is
assumed that the wavenumber kd is specified in accordance with the cri-
teria proposed by Tyler (1976) and that the surface that rides upon the
filtered (Kirchhoff) surface may not satisfy the perturbation criteria.
It is also assumed that if the wavenumber kd were specified in accord-
ance with the criteria based on the variance of the small scale surface
(Brown 1978), the remaining large scale surface would not satisfy the
standard physical optics criter.a. Thus, a perturbed-physical optics
approach cannot be applied to the problem. It is shown that the scat-
tering cross sections for this general class of rough surfaces can be
expregssed as a weighted sum of two cross sections. The contribution
associated with the filtered (Kirchhoff) surface is multiplied by a
factor which is significantly smaller than unity and the term associated

with the remaining surface that rides upon the filtered surfaces may

contribute significantly even in the near specular direction. Thus for

this general model it is illustrated that classic Bragg scattering and
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E;i specular point scattering begin to blend with each other. Since the
’ full wave approach accounts for both Bragg and specular point scattering
;ig it is not necessary to decompose (filter) the composite surface when
E;S the full wave approach is applied to this broad class of scattering
- problems; however the decomposition may provide additional physical
i;; insight into prior approaches and facilitate the computation of the
?}: gcattering cross sections.
o 2.3 Formulation of the Problem
Eﬁ Using the full wave solutions for the incoherent scattered radiation
:? fields, the expression for the normalized scattering cross section per

unit area (Ishimaru 1978) is given by

2 PQ 2
PQ_ = ko <j~ SPQ exp{iv_(h-h')} - <E _U exp(iv_h)>
<o > “_A_ y n+a y
y A,A' y
-exp[ivx(x-x') + v, (z-z') Jdxdz dx'dz'> 2.1)

Second order iterative solutions for the scattered wave amplitudes
are used in the derivation of (2.1) (Bahar 198la,b; 1982a,b). This
approximation of the full wave solution is suitable when multiple scat-
tering can be neglected. In (2.1) Ay is the projection of the rough
surface on the reference plane (y=0) (see Fig.2.l)and ko is the free
space wave number of the electromagnetic wave. The vector Vv in the

cartesian coordinate system (x,y,z) is

g & - - -
-n") = Vs + vyay + v,a, (2.2)

=i -k
where ﬁi and ﬁf are unit vectors in the direction of the incident and

scattered wave normals respectively. The coefficient SPQ is (Bahar

1981a)

sFQ . D" 4(E)U(E) DPQ*EF'>U(F'> (2.3)

fiea n'+-a
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E in which DPQ depends explicitly upon the polarization of the incident
:; wave, (second superscript Q=V -~ vertical, H - horizontal) and the

X,
'}: polarization of the scattered wave (first superscript P = V,H), the

- directions of the incident and scattered wave normals Ei and Ef, the
‘:- complex permittivity and permeability of the medium of propagation and
;5 the unit vectors, E(hx,hz), E'(h;,h;) normal to the rough surface at

b

N r(x,h,z) and r'(x',h',z'). Thus for the random rough surface

A £(x,y,2z) = y-h(x,z) = 0 (2.4a)
,£ - - - -

V£ = V(y-h(x,2)) = (-ha +a -ha)-= n|vf| (2.4b)
3 in which the components of the gradient of h(x,z),

~ h, = 3h/3x, h_ = 3h/az (2.4c)
. X Z

75 are random variables. The shadow function U(r) is unity when the sur-
-'

face is both illuminated by the source and visible at the observation

ﬁf point and zero otherwise (Sancer 1969). When the surface height h and
..Q

i: slopes (hx’hz) are statistically independent (a condition that holds for
. Gaussian surfaces at each point)

% ot 'Yy

o <—— exp(iv_h)> =< —y (v ) (2.5a)
-, n-+a y n-a y

) y

. in which x(vy) is the surface height characteristic function

s x(v), = <exp(iv_h)> = exp(iv_h)p(h)dh (2.5b)
- y y L y

) In (2.5b) p(h) is the surface height probability density function. The
. symbol * denotes complex conjugate and the symbol <> denotes the statis-
.. tical average.t

tAs an example, for a Gaussian surface, x(vy) - exp(—v§<h2>/2), where

- 0% = <h®> 1s the mean-square surface height.




If at high frequencies the higher order derivatives of the rough sur-

face h can be neglected (Sancer 1969, Bahar 1981b; Bahar 1982a,b)

<sPexp( v, (h-h') }>= [ DPQ(f)I_,(;)DfQ* (LI exp{1v [h (x-x")+h, (z-2") ]}
- (n'ay) (n"ay)
p(n,n',UU')dn dn'd(UU") (2.6)
in which p(n,n’,UU') is the joint probability density function of the
slopes ﬁ(hx,hz), ﬁ(h;,h;) and the shadow function product U(r)U(r') and
dn = dh dh , dn' = dh'dh} (2.7)
The joint probability density function p(n,n',UU') can be expressed
as follows:
p(a,n',UU') = p(n,n')p(UU’ |n,n") (2.8)
Assuming that h.x and hz are independent variables (which is true for
surfaces with isotropic roughness)
P(A,A") = p(h ,h)p(h b)) (2.9)

For a rough surface height with a Gaussian distribution, for example,

) ( b2 - 2C hh' + h)'(Z)
p(h ,h' ) = —o——== exp |\ ] (2.10a)
XX e Yl1-C? 202 (1-c2)
X X X X
in which it is assumed that
- 2, _ 2 ‘oo o2
<h > = 0, <h > g, and <h hi> = o'C_ (2.10b)

For the homogeneous isotropic surface assumed in this work the normal-

ized autocorrelation function Cx is a function of distance

r = -'- _'-- a a
4 (x=-x )ax + (z-z )az xday + z4a, (2.11)

The density p(hz,h;) is given by (2.10) with hx replaced by hz and




"\

.:\

- 2. 2 2 ! e 20 o2 (2.12)
; <hz> = 0, <hz> o, O» <hzhz> czcz c:xCx

iﬂ The two point conditional density function p(UU'|n,n') is expressed in
}§ a form similar to the one given by Sancer (1969) for p(U|n). Thus,

ol

p(UU'|5,n") = p2<af.ai 53N 6wu-1) + [1-p, (5,0t 2,8') 6 (UM, (2.13)

i; in which §(a)is the Dirac delta function and Pz(ﬁf,ﬁilﬁ,ﬁ') is the

i probability that the points r and r' on the rough surface will be both

illuminated by the source (incident wave normal, 51(91,¢i)) and visible

- .

iS5 at the observation point (scatter wave normal, nf(ef,¢f)) given the

a"_

7: value of the unit vectors normal to the surface n and n', at these

T points. In (2.13)

% p,@ 5N R) , for T+ E',C 0 1

T =f -i,- =

5_. P,(" ,n"|n,n")=

3 p, @, 50| D)R, @A), for [T-E'|> =,C >0 (2.14)
: and

Ve —f -1 - =f A= \o,~f =\ o, =i =

?. Pz(n ,n |n) = Pz(n on |ns)S(n *n)S(-n +n) (2.195)
f in which P2 (Ef,ﬁilﬁ) is the probability that a paint on the rough sur-
. face is both illuminated and visible given the value of the slopes at

E the point and P2 (ﬂf,ﬁilﬁs) is its value at the specular points (ﬁ+ﬁs)

N (Smith 1967, Sancer 1969). The arguments of the unit step functions

- S(-ﬁi°ﬁ) and S(Ef°ﬁ) vanish at points of the rough surface where the

FLo-

N incident and scattered waves are tangent to the surface. Thus S(—Ei-ﬁs)
=1 and SG'*R) = 1 (Smith 1967, Brown 1980). In view of (2.14) and
~ (2.15) it is assumed that
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2-(c2c?) /2
-f -1, =, —f =i, x 2
P,(n",n [n,n') = P2(n 0 lns)
s@i-ms@i-ays-rton)s(-atat) (2.16)
Substitute (2.16) into (2.6) and integrate with respect to UU' to get

PQ =\ PQ* =,
<SPQexp[ivy(h-h')]>=-5'D ()b ° (r') exp[ivy(hxxd+hzzd)]

= s
(n ay)(n ay)

p, ("5l |5,5")p(@,3")dn dn' (2.17)
Since <SPQexp[ivy(h—h')]> is assumed to be a function of the distance

];dl,(2.12), the scattering cross section (2.1) reduces to

PQ. ,~f -1, -
D P2(n ,n°| n) X (v )|2]
> y

n-a
y

2
<«of - :ﬂj&quexp[ivy(h‘h')b -

<

+ iv 24 ] dx,d

d 24 (2.18)

°exp[ivxxd

In (2.18) the integrand vanishes when l;dl is much larger than the

correlation distances. The evaluation of the scattering cross section

(2.18) simplifies considerably if it can be assumed that for ];dl less

than the correlation distances £ =2 (C () =C (2 ) = 1l/e and e is
X z X X z' 'z

the Neperian number)n(r) = n'(r'). In this case p(n,n') + p(n)é(n-n')

and
P

RGN 2

nea

sPQ (2.19)

Thus, for instance, when the radii of curvature of the rough surface
are very large compared to the electromagnetic wavelength A, or when the

slope of the surface is small n= a

<S exp[iv (h~h' )]>-€/l—-—£—4 exp[iv (h=h')]
n-ag

-p(hx,hz)Pz(n ,n |n)dhxdhz> (2.20)
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Equations (2.1) and (2.20) can be applied directly to composite
surfaces (Brown 1978, 1980) given by
h = h + hs (2.21)

where hz and hs are assumed to be statistically independent random func-

tions
sh sh
2 2 2 2 s 8
ko <hs> = ko Is << l’l axl = lhsxl<< 1’} azl - Ihszl<< 1, (2.22a)
2 2 22
ko <h£> = kool >> 1 (2.22b)

and the radii of curvature of the surface h2 is much larger than the
wavelength A. In this case the full wave solution for the scattering
cross section accounts for both specular point scattering as well as

Bragg scattering, and (2,21) reduces to (Bahar 1981b, 1982a,b)

<oPQ> = <0PQ>o + <oPQ>1 (2.23)

The first term in (2.23), <UPQ>o is the specular scatter contribution

2 2
4k P
v n- - -
y n+ns
= [v8G0 ) |2 <oFQ
Ix°@n)|® <ot > 2.2

in which xs(;-ﬁs) = ] is the characteristic function for the small scale
PQ

surface height roughness,hs, and <o_ "> is the physical optics scattering

cross section (Bahar 198la,b). The second term which accounts for Bragg

scattering is given by

IDPQV 2

PQ 2 5! —f -1 -

0" > = Tk —-J—-;'; W(v,-‘,v;)Pz(n',n In)p(hx,hz)dhxdhz (2.25)
y

in which W(v;,v;) is the small scale surface height spectral density

(Barrick 1970, Ishimaru 1978).
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W(v;,vx) "2 ‘f- <hs(x,z)hs(x ,2')> exp(ivxxd + ivizd)dxd dzd (2.26)

In (2.26) it is assumed that the small scale surface autocorrelation

function depends on distances lxdn1 + zdnzl measured along the large

scale surface y-hl(x,z) = 0, and Hs' the small scale surface height is
measured penpendicular to the large scale surface. Furthermore

v = viﬁ + v‘ﬁ + v ﬁ

1 T Yyt t Ven, (2.27)
is the expansion of the vector v in the local coordinate system (at
any point on the large scale surface) associated with the unit vectors
51, 52, and 53 (Bahar 1982a,b) (see Fig. 2.2).

51 = (n x ;z)/lﬁ x ;zl’ n, = n, n, =10, xn (2.28)

The scattering cross section (2.25) is in complete agreement with pertur-
bation theory (Rice 1951, Barrick 1970). Thus<oPQ>1 can be regarded as
an average (over the distribution of slopes of the large scale surface)
of the scattered power from patches of slightly rough surfaces that ride
the large scale surface (Wright 1966, 1968, Valenzuela 1968). On
expressing the unit vector n in terms of the slope angles ¥ and § in

and perpendicular to the plane of incidence, the scattering cross section
(2.25), can be compared with earlier solutions that are "mostly based

on physical considerations" (Valenzuela 1968, Valenzuela, Liang and

Daley 1971, Bahar 1981c). The expression (2.25) is also in agreement
with Brown's solution (that is expressed in terms of a two-dimensional

convolution of transforms) provided that the mean squares of the large

scale slopes a: = o: are very small., The difference between Brown's

solution and the full wave solution arises because Brown (1978) (on
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- using a combination of Burrows' perturbation theory (1967) and physical
{

- optics (Beckmann 1968) assumes that the surface height autocorrelation.
_?5 function for the small scale surface g is dependent on distances in

fi the reference (mean) plane rather than distances along the large scale
ol surface, as assumed in this work and implicitly assumed by Valenzuela

ﬁ: (1968). Furthermore, it should be pointed out that in Burrows' pertur-
3: bation theory the small scale surface height is the distance from the

o unperturbed (filtered) surface to the perturbed surface measured along a
)

:i line perpendicular to the unperturbed surface rather than perpendicular
s

A to the reference surface as assumed by Brown.

:, Since the full wave solution (2.23) accounts for both Bragg scat-

(Y

$ tering as well as specular point scattering in a self-consistent manner
s without introducing a combination of perturbation and physical optics
i

2 theories, it is not necessary to decompose the surface h2 into large

e

A and small scale surface heights hl and hs in order to evaluate the total
w scattering cross section <0PQ>. Moreover, it is not necessary to

- restrict the application of the full wave approach only to surfaces that
:: can be regarded as a small scale surface perturbation superimposed on a
< large scale surface roughness with very large radii of curvature compared to
;5 the wavelength. Thus in Section Q.4) the full wave approach is applied to
,) 1]
3\ more general composite rough surface models that may frequently fail to
2
3 satisfy these restrictions.

e 2.4 Application to Surfaces That Do Not Satisfy Perturbation and

e Physical Optics Criteria

”; If the statistics of the rough surface are known for the entire
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» B composite surface h(x,z), the total scattering cross section can be

i

- evaluated using the full wave solution (2.18). Thus using the full

~$: wave approach it is not necessary to specify the wave number k.d at

¢ which spectral splitting between the two scale surface heights is

n assumed to occur. On the other hand, when different theories such

D

)

}] as physical optics and perturbation theories are combined to analyze

»

]

- composite rough surfaces, it is necessary to spectrally decompose

;\ (filter) the rough surface. For instance, in Brown's work (1978) the

:j; specification of kd is assumed to be based upon the characteristics

f. of the small scale structure (k§<h§> << 1), However, in the work by

- Tyler (1976), the specification of kd is assumed to be based on the

-;f characteristics of the large scale surface. Thus, in order to apply

<,

Y physical optics theory to the large scale surface roughness, Tyler

o3 imposes the condition

"

~ 2 ~2
» P(|r],] <r],) << 1 (2.29)

‘ 2 "2 2

N in which P(Irlzl < rlz) is the probability that Irlzl (the absolute

o

0N

v - value of the product of the principal radii of curvature of the large

” scale surface) is less than riz, and the critical value for r?z is
assumed to be k2 (Tyler 1976). If both conditions (2.22b) (k§<h§> «< 1)

o

j? as well as (2.29) (P(|r12|2 < Eiz) << 1) are satisfied simultaneously,

P

- the scattering cross section is expressed as the sum of the specular
-i. point scattering cross section and the Bragg scattering cross section

A

‘:~ (2.23), since surfaces hs and hl individually satisfy the limitations

30

> imposed by perturbation and physical optical theories respectively.

: However, if both conditions are not satisfied simultaneously, the




physical optics model or the perturbation model or even a perturbed-

physical optics model cannot be assumed in general.

To gain more physical insight and to facilitate the evaluation of
the cross section (2.1), it is assumed here that the rough surface
height h is decomposed into two surfaces hF and ER (see Fig. 2.3). Thus
- EF (x,hp,z) + ERE (2.30)
in which, following the filtering scheme proposed by Tyler (1976), the

surface hy satisfies the conditions P(Irizl < riz) << 1 and k§<h§> >> 1.

23]

However, it is assumed that the remainder term ER does not satisfy the
perturbation condition (k§<ﬁ§> << 1). Assuming that hF and ER are

statistically independent random functions

<exp[ivy(h-h')]> > exp[ivy(hixd+h£zd)ng(v§,-v§) (2.31a)
Thus the full wave solution (2.18) can be written as
kz )
<ot - ;2-<‘fp S exp[iv (h X +h zd)](lxRI2 +x§-|xR]2) (2.31b)

- -
exp[ivxxd + ivzzd]dxd dz ;>

in which for convenience the term lxR|2 is added and subtracted and XR
and xg are the characteristic and joint characteristic function for the

surface height hR respectively.

f;(v;,-v§) = <exp[iv§(ﬂR—ﬁi)]> (2.31c)

In (2.31b) it is assumed that IxFlz << 1 since k§<h§> >> 1. Thus, fol-
lowing the analytical procedures used in deriving (2.23) (Bahar 198lc),

it can be shown that

<0PQ> - <oPQ> + <0PQ> (2.32a)
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in which 2 w
k
PQ. __o© PQ F_ . F R(2
<o > — < ’{' S exp[ivy(hxxd+hzzd)]|x l exp[ivxxd+ivzzd]dxddzd>
> 1865y % <t (2.32b) |
and <0£Q> is the specular point scattering cross section for the ]
|

filtered surface hF' Since in this case it is assumed that k§<5§> 1s
not much smaller than unity, the factor in (2.32).[xR]2, can be signi-

ficantly different from unity. On deriving the expressions for <czQ>

(2.24), and <oPQ>F (2.32b), it is assumed that v§<h§> >> 1 and deep

phase modulation occurs for all the roughness scales included in hF.
Furthermore, the scattering cross section associated with the sur-

face ER (that rides on the filtered surface) is

K J’ JDPQ | 2P2 @i, ails)
<

Q. _ o
>R m

<o

R R 2
[xz(v§.- v;) - |x (v;)l 1 (2.32¢)

n-a
y

-exp[ivi xg + iv;zd]dxd dz>
in which it is assumed that (2.19) is valid, Vs v; and v- are the com-
ponents of v in the local coordinate system associated with the filtered
surface hF (2.27), and (Eg + Ei)k is distance measured along the
filtered surface y—hF(x,z) = 0 (see Fig. 2.3).1It can be readily shown
that 1if k§<5§> << 1 (2.32¢) reduces to (2.25) with ER = hs’ since in this
case

R _ _tR 2 .2 ¢ m

x2(v?, vi) ]x (vy)} v; <hR hR> (2.33)

If the surface height ER 18 normally distributed and

k§<5§> is not much smaller than unity
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. R R 2 2 =2 2 ==y

{ xz(vy.-vs,-) - Ix (V;,)I 'exp(-vy<hR>)[exp(vy<thR>) 1].  (2.34
In this case (2.34) is expanded as follows

. 2 h .
- P (vg<hphg>)
10y b | expeipyr - — +

§ 1 (2.35)
PQ
: and <o >r (3.22c) can be expressed as
LPQ Ly o PQ
- v R L <0 Rm (2.36)
. m=1
2 )
o where 2 2 £
- P -f —4|=
T 2 K |pFY P, (@ 0 |0) ) o
<o e = o < == exp(-v§<hR>)
- y
: (vE<Bhe>)™
¥ . L exp(ivox, + iv.z,)dx,dz >
: m! %'d z°d’“*a%%
PQ;2 -f =-1=
) 2 lD Ql Pz(n 50 In) 2 =2 V; 2m W (C-,V-)
% = 41rko< —— exp(-v§<h.R>). 7 m :'c z’ (2.37)
- n-a 2 m.
-, y
v and
) W (vg,vs)
o m X’z __1 = =, .\ = T NAT 43
+ 22m (21;)2 f(<th.R>) exp(:l.vxxcl + ivzzd)dxddzd
-4
' - L_ 1o ! ! ! ' '
i ,7m f Vo1 Vg Vgd¥) (Vg vgs Vg g)dvg.dvy
-
3 !
” : W (V2vz) OW, (v, vp) (2.38)
Ca

In (2.38) the symbol@denotes the two dimensional convolution of “m—l
. wl (viiv;) w(v’—( ’vi)
with W. Since A - A is the two dimensional Fourier

[

transform of the surface height autocorrelation function <ﬁkﬁé>, the

- ) o AU,
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PQ,

<
term <o R

| accounts for first-order Bragg scattering. However, since
4 2 ¢ 2 =2
k°< k> is not much smaller than unity the factor exp(-vy hR ) appear-

ing in <0PQ>

Rl is significantly smaller than unity for backscatter near

normal incidence and approaches unity for backscatter near grazing
incidence. This factor does not appear in the solution derived on the
basis of perturbation theory (2.25).

When the autocorrelation function <ERK£> can be expressed analytic-
ally in closed form, the two dimensional Fourier transforms in (2.38)
can be integrated directly. For example, when the Gaussian form is

used,

<Bhl> =exp((-X- - 22)/T7) (2.39)

closed form expression can be derived for Wm(vi,vz) which are also
Gaussian (Beckmann and Spizzichino, 1963). However, since in practical
problems the surface height ER is usually characterized explicitly by

its spectral density function W(vi,vi), and since this function is rarely

Gaussian for natural surfaces, the Fourier transforms in (2.38) are

evaluated through the repeated use of the two dimensional convolution

theorem.

g

If the mean square slope of the surface height is very small com-
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pared to unity (n -+ ;y)

Loy
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:-5' PP . 2,.PQ;2 -f -1~ 2.2
,'-’-:: <g >R2 = lnrkolD l_ - P2(n o Iay)exp( vy<h'R>)
LA f=a
e
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The expression <0PQ>R2 can be readily evaluated for backscatter
near normal incidence. Thus assuming a perfectly conducting surface,
for Ef w -n = a
y
P 6 2 =2
<q Q>R2 > 2k exp(-4k’ <he>)W, (0,0) (2.41)
Assuming, for example, as isotropic surface height spectral density
of the form
4
/k , kl <k < k,
w(k)
0 ’ k < kl and k > k2 (2.42)
il w2 {1 1
W, (0,0) = Wiokd kg = 2 | L. 1
2 3 6 6
o k k, k (2.43)
1 1 2
The mean square of the surface height ER is
2n k2
22 () _TACL _ L
<hg> = f I 3 ke =M 5 -3 (2.44)
o k k1 k2
2 2
Thus for k2 >> kl
=2_3
2 4<hR>
TA
WZ(O,O) = —3—- A (2.45)
and (2.41) reduces to
PP 2 2,23 2 =2
<0 >0 T IR (4k°<hR>) exp(-4ko<hR>) (2.46)
As in (2.25), the contribution <cPQ>R, (2.32¢) to the scattering cross
section is due to scattering by the surface ER that rides on the filtered
surface hF' In general however, if k§<ﬁ§> is not much smaller than unity
R N N R B R N R R N O R R




(.. B T e N S N e N A S L B L S L A S R R R A ‘.'WF_‘.'_'T'_T"_'T_'{'_"’_‘:'_WT‘_':‘_‘T' -;-_v:}-A—.r_—"
*

51
the contribution to the scattering cross section <0PQ>R, (2.32¢)

cannot be derived on the basis of perturbation theory and the factor

2
IxRI in (2.32b) cannot be replaced by unity. Thus a combination of

perturbation theory and physical optics theory cannot be applied to
. this problem. Physically, the coefficient [xR|2 in (2.32b) accounts
for the fact that when k§<ﬁi> is not much smaller than unity, the
surface irregularities ER that ride on the filtered surface hF could
significantly reduce the contribution of the "specular" scattering

cross section, <QPQ>F, associated with the filtered surface hF. For

backscatter, the perturbation term associated with Bragg scatter

<0PQ>1 (2.25) 1s much smaller than the term associated with specular

scatter <qPQ>° (2.24) near normal incidence and <0PP>1>> <0PP> for
o

near grazing incidence provided that (2.22) and the radius of curva-
ture criteria are satisfied. However, for the more general case treated
in this section a similar relationship between <0PP>F (2.32b) and

<gPP>R may not exist. Thus, while it is certainly not necessary to

decompoge (filter) the rough surface height h into surfaces hF and ER
(2.30) in order to derive the scattering cross sections when the full

wave approach is used, such a decomposition does provide additional

RS

physical insight. The results of the analysis carried out in this

Y

2P

section illustrate how the specular scattering and Bragg scattering com-

i

ponents of the total scattering cross section begin to blend with each

other as the value of ki<ﬁ§> increases and the composite surface can

N

2 no longer be regarded as a perturbed-physical optics (Kirchhoff) surface.
e Furthermore, the decomposition (filtering) of the surface height assists
-': in making the result (2.1) easier to compute.

N
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It can also be shown that if instead of (2.30) the criteria
for decomposing the composite surface is based only on the character-

istics of the small scale surface height hs’ (2.22b) such that

h = hs + hR (2.47)

and if the radii of curvature associated with the remaining surface hR
are not large compared to wavelength (such that the physical optics
theory cannot be applied to it) the full wave approach can still be used.

2.5 Concluding Remarks

It is shown that since the full wave theory accounts for both Bragg
scattering as well as specular point scattering in a self-consistent
manner, in order to evaluate the scattering cross sections it is not
necessary to use a combination of perturbation and physical optics theo-
ries. Furthermore, it is shown that the general formulas derived in
Section (2.3) can be applied to surfaces that do not necessarily satisfy

the perturbation theory restrictions ki<ﬂ§> << 1 and/or the physical

optics theory restrictions on the radii of curvature (2.29). For the
general case considered in Section (2.4), in which a perturbed-physical
optics approach cannot be used, it is illustrated how Bragg scattering
and specular point scattering begin to blend with each other. 1In this
case, decomposition (filtering) not only enhances one's physical insight,
but also facilitates the numerical evaluation of the scattering cross
sections (2.1). These numerical evaluations need to be pursued with
special emphasis on the specification of kd (where spectral splitting

is assumed to occur).
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i;s 3.0 COMPUTATIONS OF SCATTERING CROSS SECTIONS FOR COMPOSITE SURFACES

A AND THE SPECIFICATION OF THE WAVENUMBER WHERE SPECTRAL SPLITTING

s OCCURS

23

}ﬂ 3.1 Background

o The scattering cross sections for composite random rough surfaces
are evaluated using the full wave approach. They are compared with
earlier solutions based on a combination of perturbation theory which
accounts for Bragg scattering and physical optics which accounts for
specular point theory. The full wave solutions which account for both
Bragg scattering and specular point scattering in a self-consistent
manner are expressed as a weighted sum of two cross sections. The first
is associated with a filtered surface, consisting of the larger scale
spectral components, and the second is associated with the surface
consisting of the smaller scale spectral components. The specification
of the surface wavenumber that separates the surface with the larger
spectral components from the surface with the smaller spectral compon-
ents is dealt with in detail. Since the full wave approach is not
restricted by the limitations of perturbation theory, it is possible
to examine the sensitivity of the computed values for the backscatter
cross sections to large variations in the value of the wavenumber where
spectral splitting is assumed to occur.
3.2 Discussion

- In this section, the backscatter cross sections for composite

i: models of rough surfaces are evaluated using the full wave solutions

EE to the problem (Bahar and Barrick 1982). The like-polarized backscatter
cross sections for both vertically and horizontally polarized waves as
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well as the cross-polarized backscatter cross sections are evaluated

{ as functions of the angle of incidence. In order to compare the full
e

5 wave results with earlier solutions for the backscatter cross sectiomns,
-

w

the full wave solutions are expressed in terms of a weighted sum of

scattering cross sections. The first is associated with a filtered

MY

2 surface hF consisting of the larger scale spectral components (k < kd)'
.g The second is associated with a surface hR consisting of the smaller

. scale spectral components (k > kd) (see Section 2).
‘iz In an attempt to draw more definite conclusions regarding the

i choice of k.d (the wavenumber where spectral splitting is assumed to

‘\ occur) between the surfaces hF and hR’ the wavenumber k.d is varied over
fs a wide range of values. The wavenumber kd is related to the parameter
i: B = Aki <h§>, where kb is the wavenumber for the electromagnetic wave
f: and <h§> is the mean square of the surface height hR‘ Thus, on applying
3 a perturbed-physical optics approach to rough surface scattering (Brown
jé 1978, 1980), the wavenumber k.d was chosen on the basis of the charac-
A teristics of the surface consisting of the small scale spectral compon-
}s ents. However, in the approaches of Hagfors (1966) and Tyler (1976),
.2 the specification of the wavenumber l<.d is assumed to be based on the

- characteristics of the filtered surface hF' In their approaches, however,
g they ignore the effects of the surface hR (consisting of the smaller

<.

spectral components, k > ka) since their results were meant to explain

‘,

backscatter from lunar and planetary surfaces at near normal incidence.
It should be pointed out that even if the spectral components of

the filtered surface density satisfy the radii of curvature criteria

(associated with the Kirchhoff approximations of the surface fields),

" A" T .
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they may not necessarily satisfy the condition for deep phase modulation
implicit in the evaluation of the specular point result (Barrick 1970).
In Section (3.3) of this report the principal full wave expressions
for the normalized scattering cross sections are summarized. Since the
parameter B need not be restricted by coneiderations of perturbation
- theory, it is assumed that the filtered surface hF satisfied the radii
é of curvature criteria (associated with the Kirchhoff approximations for
“:: the surface fields) as well as the conditions for deep phase modulation.
!! In Section (3.4) an extensive set of numerical data is presented
for the backscatter cross sections assoclated with the like-polarized
and the cross-polarized waves. It is shown that while, as expected, the
cross sections associated with the individual surfaces hF and hR criti-
cally depend on the choice of 8 (and therefore kd)’ the total back-
scatter cross section remains practically insensitive to B for 8 > 1.0.
However, there are small, though perhaps significant, differences in the
values for the total cross sections where B is increased from 0.1 to 1.0.
It should be pointed out that these differences (as B varies from 0.1
to B = 1.0) are significantly smaller than those predicted on the basis

of Brown's analysis. The reason why the full wave results for the total

b'Za 2o

backscatter cross sections merge for values of B8 >1.0 is related to the

condition for deep phase modulation. Some of the key observations of

A

AR
.

Brown, in his contribution to rough surface scattering, (1978), are

v ow .l
N

TR

summarized in Section (3.4) to emphasize the problems related to the

specification of ka. However, the interested researcher in this field

should familiarize himself with his work as well as the pioneering

v v W
B

P

ANDANIA' 4
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contributions of Hagfors (1966) and Tyler (1976).

The details given in the fllustrative examples of Section (3.4) are
presented primarily for tutorial purposes and to vividly establish the
criteria for specifying kd. Thus, the engineer need not consider the
evaluation of the cross section for B > 1.0 or concern himself with the
individual terms that add up to determine the total cross sections.
Nevertheless it does enhance the engineer's physical insight in dealing
with problems of rough surface scattering. For example, the full wave
approach can explain why the frequency dependence of the backscatter
cross sectlons changes as one changes the angle of incidence or when one

varies the frequency of the electromagnetic wave.

3.3 Formulation of the Problem

In this section the principal expressions for the normalized scat-
tering cross sections per unit area are summarized and the full wave solu-
tions are compared with earlier solutions based on perturbation and
physical optics theories.

The expressions for the normalized scattering cross sections per
unit area (Ishimaru 1978), based on the full wave solutions for the

incoherent scattered radiation fields, are given by (Bahar 198la)

2 PQ, ,~f =1,-
k PQ . D" *P,(n ,n"|n)
W% -2 | [‘s exolivy (oo - £ T >x(ny)|2]

n-+a

i -exp[ivxxd + 1vzzd]dxddzd (3.1)

in which
(3.2)

~— T
D N Y

-- _'- _"'- - a
4 (x-x )ax + (z-2 )az X483, + z58,

is the radius vector between two points in the reference plane (x,z)
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(see Fig. 3.1). The vector v in the reference coordinate system (x,y,2)
is

- -f -1 - - -
v ko(n -n") va, + vyay + v,2, (3.3)

where ko is the free space wavenumber for the electromagnetic wave and
ﬁi and ﬁf are unit vectors in the direction of the incident and scattered
wave normals respectively. An exp (iwt) time dependence is assumed

throughout this work. The symbol < > denotes the statistical average

and it can be shown that (Bahar 1981b)

2
PQ, -
<579 expl v, (b-h')]>= <f D—.%’Ll expl v, (h-h")]
n-*a
y

P(hx,hz)pz(ﬁf,Eilﬁ)dhxdhz > (3.4)

where n is the unit vector normal to the rough surface (see Fig. 3.1).
f(x,y,z) =y - hix,z) = 0 (3.5a)

Thus

VEf = n|VE| = V(y-h(x,29 = (-ha + ;y -ha) (3.5b)

in which the components of the gradient of h(x,z)

h.x = 3h/3x , hz = 3h/3z (3.5¢)

are random variables and p(hx‘hz) is the distribution function for the

slopes hx and hz. The expression for <0PQ> (3.1) accounts for shadowing
and
p,%,al |8 = @t &R ) s -Dst-aten) (3.6)

in which Pz(ﬁf,ﬁilﬁ) is the probability that a point in the rough surface

is both illuminated and visible given the value of the slopes at the point

(Smith 1967; Sancer 1969) and Pz(ﬁf,ﬁilﬁs) is its value at the specular




. |

.S .

VLI ]

LA Vi

¥ a

58

L/
e

0“‘&‘
ate%e%els

‘0 = £ sy 9oejans yBnoa 103 auerd (eduaiajaa) uesy

‘wa3s4s 231BUTPICOD IOUIIIIIL Y] 03 I09dSe1 YITM I933BDS pUB 9DUIPTOUT JO SaUBTd

5

wap1oy|

XA, L

‘1°¢ 834

-
-

TR

Tty W N e
AR

™ "~ .‘.- ‘._-- '.-. - ] '...
Y NI LA

.
<o
e

"

o

o

*:..._ -'q'_-" e '-."-

"
AT N



..........................................

; &.5.

M .‘-] [.A .

N 59
= _
b points where the unit vector n is given by
.
Care
" n>n r v/v 3.7)
~ n-n|
:{ The arguments of the unit step functions S(-ﬁi-ﬁ) and S(Hf-n) vanish at
N
¢

points of the rough surface where the incident and scattered waves are
tangent to the surface. Thus S(-t-11~ﬁs) = 1 and S(r-xf -r-xs) = 1. The charac-
teristic function and the joint characteristic function for the surface

height h are respectively,
= < iv h)> 3.8
x(vy) exp( vy ) (3.8)
and
xz(vy,-vy) = <exp 1vy(h-h')> (3.9)
For rough surface heights with Gaussian distributions (assumed in this work)
2 .2
x(vy) = exp(-vy<h >/2) (3.10)
in which <h2> - 02 is the mean square surface height. Furthermore,
Xp(v) = expl-vi(<h®> - <h h'>)] (3.11)

vhere<h(x,z)h'(x',z')> is the surface height autocorrelation function. The
coefficients DPQ (Bahar 198la) depend explicitly upon the polarization of
the incident wave (second superscript Q=V - vertical, Q=H - horizontal)

and the polarization of the scattered wave (first superscript (P=V,H),

the direction of the incident and scattered wave normals ﬁi and Ef re-

spectively, the complex permittivity and permeability of the medium of
propagation € and u respectively and the unit vector n normal to the rough

- surface. In the above expression for <0PQ>, (3.1), it has been assumed

that the surface height h and slopes (hx’hz) are statistically independent
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a condition that holds for Gaussian surfaces at each point) and that for
distances I;dl less than the correlation distances % (where the surface
height autocorrelation function C(L) = C(o)/e)

ﬁ(hx,hz) = E‘(h;,h;) (3.12)

If the statistics for the entire rough surface h(x,z) are known, the
total scattering cross sections can be evaluated using the full wave solu-
tion (3.1). However, when a combination of perturbation theory (Rice
1951; Barrick 1970) and physical optics theory (Beckmann 1968) is applied
to the problem of rough surface scattering, a two scale model of the
surface is used and the surface is decomposed into a filtered surface
height (consisting of the large scale spectral components of the surface
height) and a small scale surface height hs that is superimposed (rides on)
the large scale filtered surfaces (Wright 1968, Valenzuela 1968; hs
consists of the smaller scale spectral components of the surface height).
To this end it is necessary to specify the wavenumber kd at which spectral
splitting is assumed to occur. For instance, Brown (1978) who uses a com-
bination of Burrows' perturbation theory (1967) and physical optics
(Beckmann 1968), bases the specification of k.cl upon the characteristics of
the small scale structure (kg <h§> << 1). However, in the works by
Hagfors (1966) and Tyler (1976), the specification of k.d is assumed to be
based upon the characteristics of the large scale (filtered) surface hF.

Thus, in order to justify the application of physical optics theory to the

large scale surface roughness, Tyler (1976) imposes the condition
2 ~2
P(|r],] < r],) << 1 (3.13)

in which P(|rf2| <;%2) is the probability that |tf2| (the absolute value
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of the product of the principal radii of curvature of the large scale
surface) is less than ffz, and the critical value for f%z is assumed to be
ko-z(Tyler 1976) .

Since the full wave approach accounts for both specular point scatter-
ing as well as Bragg scattering in a self-consistent manner, it is not
necessary to filter (decompose) the rough surface to evaluate the scatter-
ing cross sections. However, filtering the composite surface enhances
one's physical insight as to the validity (or lack thereof), of the
perturbed-physical optics approach to the scattering problem and also
facilitates the numerical evaluation of the cross section. Thus it is
assumed here that the rough surface height h(x,z) is decomposed into two
surfaces such that the position vector to a point on the rough surface is

r = EF(x,hF,z) +n ER (3.14)

In order to apply the physical optics-specular scattering approximation

to the filtered surface hF (consisting of the larger scale spectral com-
ponents) assume that h.F satisfies the appropriate radii of curvature cri-
teria (for example (3.13)). In addition, assume that deep phase modulation
occurs. Thus, the distances from the transmitter and receiver to the indi-
vidual specular points (which are random variables) are such that the
contributions from the individual specular points are distributed uniform-
1y in phase from -m to 7.. One should also note that no matter how the com-
posite surface is filtered, the physical optics approach (based on the
Kirchhoff approximations for the surface fields) is not valid if for a
given Ei and ﬁf specular points do not exist on the rough surface

(Bahar 198la,b). Let ER consist of the remaining part of

the rough surface spectrum (k > kd). Since in this case kd
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is specified by the desired characteristics of the filtered surface hF,it

is not assumed here that ki€B§> is much smaller than unity. Thus per-

turbation theory (Rice 1951; Barrick 1970), cannot be applied to the
remaining part of the surface height ER' For truly random, rough natural

surfaces such as the sea surface, it is assumed that h_ and HR are statis-

F
tically random functions., If in addition, it is assumed that Vh = VhF,
the full wave solution (3.1) can be expressed as a weighted sum of the

individual cross sections for the surfaces hF and BR respectively (Bahar

1981b).
<gPQ> = <oPQ> + <0PQ> (3.15)
F R
PQ
The first term <o >p can be shown to be given by
B = GRS, (3.16)

in which xR(;-ﬁs) - xR(v) is the characteristic function for the surface
PQ

@

ER and <0 > is the specular point scattering cross section for the fil-

tered surface hF' The factor xR(v) that multiplies <0PQ> accounts for the
degradation of the specular points contributions due to the superimposed

surface ER (Bahar 198la). It can be shown that

4nk2

2
PQ
D -f =fi= -
2 — P2(nf,ni|n)P(n)
n-°a n-n

y y s

<0‘PQ> L]
[

v (3.17)

The second term <0PQ>R is the scattering cross section for the surface
that rides on the filtered surface hF. It can be expressed as follows

(Bahar and Barrick 1982)

\ P [
* <qg Q> - <cPQ>
‘e R R 3
m=1 n (3.18)
'~'"..-Sr"'.ﬂj'-':\':'-.:\'.\':\'"-'.‘" ._.~__..'.'_~\.'.'.-\_-.-...~-..-‘..-_ el .~ ,‘-‘- '.'_'."‘.'.'_- e et UL S R N
2 PCAA TP P AT O R I R R R T R T L R PO ¢
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where
2 ) (IDPQIZ p, & ,at D) v 2y (vz,vo)
<> = Awko — exp(-v- <hR>) —
m J nea
y
p(h_,h_)dh dh_ (3.19)

in which V2 v; and v are the components of v (3.3) in the local
coordinate system (at each point on the large scale surface) associated
with the unit vectors El’ 52, and 53 (see Fig. 3.2), Thus v

in (3.3) 1is also expressed as (Bahar 1982)

v = v;n1 + v;n2 + v;n3 (3.20)

where

Hl = (n x 52)/lﬁ X Ezl . 52 =n,n;=n xn (3.21)

The function Wm(vi,VE)/sz is the two dimensional Fourier transform of

(<hy E;g)“‘

AN Y (P50 T S )
- < >) exp iv-x + iv -z,)dx.d
,2m (2m? ey RLLEN
1 ] ] . 1] 1 ] L L
- -22—m—f M1 V3 avz W (v = vz Tovg - v ) dvgldy;
- 22; 1 Vaay )@ W (v=,vy) (3.22)

In (3.22) lid;x + E&;zl is the distance measured along the large scale
surface and the symbol (:) denotes the two dimensional convolution of W

with W Since Wl(vi,v;)/é = W(v;,v;)/4, is the two dimensional Fourier

1.
transform of the surface height autocorrelation function <ERE§>’ it is

equal to the spectral density for the surface height ER' Thus, the first

term in (3.18), <0PQ>R1, accounts for first order Bragg scattering.

m-1
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However, when 4k§<ﬁ§> is not much smaller than unity the factor

exp(-v%<ﬁ§>) appearing in the expression for <0PQ>Rl is significantly

smaller than unity for backscatter near normal incidence and approaches

unity for backscatter near grazing incidence. This factor as well as the

coefficient xR(v) in the expression for <0PQ>F (3.16) do not appear in

the expressions for the scattering cross sections based on a perturbed-
physical optics solution. Moreover, the arguments of W(vi,v;) are the

components of v in the local tangent plane and not in the reference plane

(x,z). Thus for k§<52 PQ,

R = <qPQ>

R Rl ©8n be regarded as an aver-

> << 1, <o

age (over the distribution of slopes of the large scale surface) of the

scattered power from patches of slightly rough surfaces that ride the

large scale surface (Wright 1966, 1968; Valenzuela 1968). The scatter-

PQ
’R1

are 'mostly based on physical considerations" on expressing the unit

ing cross section <o can be compared with earlier solutions that

vector n in terms of the slope angles ¥ and § in and perpendicular to the

plane of incidence (Valenzuela 1968; Valenzuela, Laing and Daley 1971;

PQ)

R1 is also in

Bahar 1982b). For k§<ﬁ§> << 1 the expression for <o
agreement with Brown (1978) (as corrected in Brown 1980), provided that the

mean squares of the large scale slopes are small. This difference arises

primarily because Brown assumes that the surface height autocorrelation
function for the small scale surface is dependent on distances |r,| =

(xg + zg);5 (3.2) in the reference (mean) plane rather than distances

2 + ;2)% measured along the large scale surface as assumed in this work

(xg + 24

and implicitly by Valenzuela (1968). Moreover, using the perturbation
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method (Burrows 1967), the small scale surface height ER is measured
normal to the filtered surface hF rather than normal to the reference
plane (y=0) as assumed by Brown (1978).

As the parameter 8 = 4k§<ﬁ§> increases and the corresponding value
for k.d (the wavenumber at which spectral splitting is assumed to occur)
decreases, it is necessary to retain an increasing number of terms in
(3.18). However, since the full wave approach accounts for specular point
scattering as well as Bragg scattering in a self-consistent manner, the
numer ical value for the total scattering cross section <0PQ> (3.15)
should not depend on the specific value of kd’ provided that the filtered
surface hF satisfies not only the radii of curvature criteria but also the
condition for deep phase modulation assumed in reducing (3.1) to the form
(3.15). This property of the full wave solution is demonstrated in the

next section where illustrative examples are presented.

3.4 1Illustrative Examples

In order to compare the full wave solutions for the scattering cross
sections (3.15) with earlier solutions appearing in the technical litera-
ture (Brown 1978, 1980), the following specific form for the total surface
height spectrum is selected

(%)Bkl'/(kzwz)l' k <k,
WT(VE,V;) - (%)S(vi,v;) =

0 k > kc (3.23)
where W is the spectral notation originally used by Rice (1953) and S is
the notation used by Brown (1978). For the assumed isotropic model of the

ocean surface
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B = 0.0046 (3.24a)
K2 = vf-! + v%,(cm)-z s k=12 (em)~! (3.24b)
< = (335.2 V) ey, v = 4.3 @/s) (3.24¢)

in which V, the surface wind speed is given in m/s. The wavelength for

the electromagnetic wave is

A, = 2(em) , (k= 3.1416 (em)™)) (3.25)
The mean square height for the surface hR is given by
2 kc
wtre [ [ 2% g -2 [2o L
by Z Ky K (3.26)
c
o k.d

and the mean square slope for the filtered surface hF is

27 kd

, 2
W (k) kS + Kz\
2 _ .2 . T 3. B |-l d
Ops = “Pps” ‘jpljﬁ A s / (3.27)
o O

In (3.26) and (3.27) it is assumed that ky >> k. The slope distribution

function is assumed to be Gaussian, thus

1 hi'*h:
FS FS (3.28)

The directions of the incident and scatter wave normals are (Bahar 198la)

-1 i i- i- i i-
n sineo cosd a - coseo ay + sine° sin¢ a,

-f f f - f - f -

n sine° cos¢ ay + cose° ay + s8in6_ sin¢ a,
-f -1 1

Thys for backscatter (n° = -n )eo =0

oOm O m

i f
- eoy ¢ = 0,6 = m,

of e il gind & + cosd a (3.29a)
o X oy
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.

TR
A s s .

n-"- I‘ f.f
-.‘::'-'/ )

-
?

5 - Zkbﬂf (3.29b)

For perfectly conducting surfaces the relative permittivity and permea-

bility of the medium y < h(x,z) is Ierl +®, u. > 1, thus RV* 1 and
RH + -1 and the backscatter cross section <0PQ>B(3.17) is given by
[ ]

(Bahar 1981b)

-\0
RS 4 2
f\; sec O tan 6
- PG e ® e O
- B PQ o2 o? (3.30) i
3 FS FS !

A

where GPQ is the Kronecker delta. The values for Wm(vi,v;) (3.22), are
evaluated numerically for m = 2,3. (see Fig. 3.3a and 3.3b). In these
plots B = 1.5, and W, = VT for k > kd. As kd decreases the number of

significant terms in the expression for <0PQ>R (3.18) increases. The

individual terms in <0PQ>R (1.e., <0PQ>Rm) can each be integrated numer-

ically and summed to obtain <0PQ> or the integrands of the individual

R
terms may be summed and numerically integrated once to give <0PQ>R.
While the later procedure is more efficient, for the purpose of the

illustrative examples presented here each individual term <GPQ>Rm (3.19)

is evaluated separately.

To provide a basis for comparing the full wave solutions with earlier

o results, the normalized backscatter cross sections are also evaluated

.
E;a using the analytical results recently derived by Brown (1978, 1980). Since
% his work is based on Burrows' perturbation theory (1967) and physical
:ti optics (Beckmann 1968), he specifies k; = 2n/kd (the wavenumber where

ESE spectral splitting is assumed to occur) on the basis of the characteris-
E;; tics of the small scale structure. Thus Brown concludes that his work
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"...clearly demonstrates the merit of choosing B = 4k§<ﬁ§

> as large as
possible. On the other hand, B must be less than one in order to satisfy
the basic criteria for the suitability of the perturbation technique,

i.e., 4k§<ﬁ§> << 1". Furthermore, on examining his illustrative examples,
he notes that "It would appear from these numerical results that a proper
choice of k.cl should be based on the criterion 4k§<ﬁ:> = 0.1"... "Any attempt

to draw a more positive conclusion about the choice of Ad would have to

address the basic question of the dividing lines between two types of

scattering mechanisms," Brown goes on to say, "the results in this paper

are based upon the assumption that the scattering is either physical optics
(or geometric optics for kb large enough) or small scale diffraction.
Given this assumption, the criterion 4k§<5§> = 0,1 seems reasonable." on
the other hand, Brown (1978) notes that ",..the concept of a truncated or
filtered spectrum was first hypothesized by Hagfors (1966) in an attempt
to explain lunar scattering data and the observed frequency dependence of
near normal incidence scattering, More recently Tyler (1976) has
attempted to definitize Hagfors' filter theory by basing the spectral
truncation wavenumber on a criterion related to the radius of curvature

of the large scale surface. Both these approaches base the point of
spectral truncation upon a characteristic of the large scale structure,
whereas, according to Brown, "it should be based upon the small scale
structure 1i.e., 4k§<ﬁ§> << 1," Einally, Brown points out that his results
"...indicate a smooth transition between the geometric optics and Bragg

scattering regimes which previously have been obtained in an ad hoc

fashion."




D .
------
.........

s 72
1_:.\
R
.
ol
{ Since the full wave solution, (3.l1), accounts for both physical
. _\:_
E}tf optics-specular scattering as well as Bragg scattering in a self-~
N
-igj consistent manner, it dis used here to explore the basic question of an
, apparent dividing line between the two types of scattering mechanisms.
i.\ :
D ; In Figs. 3.4a, 3.4b, and 3.4c¢c, the normalized backscatter cross
“{s
BN section <o*> based on Brown's results are presented for 8 = 0.1 (cor-
, responding to oés = (Zit) = 0.0224 and k; = 0.95 (cm)-l). These figures
)\“J
s PQ_ o PQ. _ .0 PQ. _ r.©
N show <o~ > opq (the total), <o > [oPQ]o and <o “>p [oPQ]l. Figs.
i§;. 3.4a and 3.4b for <g''> and <0HH> differ slightly from the results
.\ .
;;?- presented by Brown (1978) for 0 < 6 < 70° since he approximates F%P.
oy PQ L2
K (hFx’th) (related to S" ) by its zero slope approximation rPP' (0,0)
R
~.
b, . and replaces the shadow function R (P2 in the notation used here) by unity.
i;:. These approximations enable Brown to analytically convert the two dimen-
o
}?f sional integrals into one dimensional integrals which he evaluates numeri-
WAL
N cally. The main differences are near grazing angles (eo > 80° not shown
.,ﬁj in Brown's work) where shadowing becomes significant. Moreover, since
L]
'j;: - Féﬂ(0,0) = 0 he does not provide numerical data for the cross-polarized
)
", ¢
37 backscatter cross section PRALN (Fig. 3.4c). 1In view of Brown's comments

regarding the optimal choice of B (0.1) and the sensitivity to his numerical

fog
§é§ results to changes in B, no other results based on Brown's work are

FEEE presented here. In Figs. 3.5a, 3.5b, and 3.5c, the corresponding results
;;ﬁ (B = 0.1) based on the full wave solutions (3.15) are presented. In each
Egg of these figures <0PQ> (the total backscatter cross section) <0PQ>F (3.16),
5,;3' (the cross section associated wit:hv the filtered surfaces) as well as

o <°PQ>R1 and <oPQ>R2 (3.19) (the cross sections associated with hR) are
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presented. For 8 = 0.1, <0RQ>

Rm for m > 3 are not shown since they are too
small to affect the total cross section <0PQ>. Furthermore, since
IxR(;°ﬁs)|2 -efe 1, exp(-v% <h§>) =1, and <0PQ>R2 is small compared

to <0PQ>RI,these results are very similar to those based on Brown's work.
In Figs. 3.6a, 3.6b, and 3.6¢c through 3.9a, 3.9b and 3.9¢c, the scattering
cross sections based on the full wave solutions are presented for B = 0.25,

0.5, 1.0 and 1.5. 1In Figs. 3.9a, 3.9b, and 3.9c, the term <o¥® - 1s also

R3
presented since it becomes significant for 8 > 1.5. In Fig. 3.10,<0VV> is
presented for B = 2.0 to demonstrate the importance of the term <ovv>R3 as
B increases above the value of 8 = 1,5,

From the results based on the full wave solutions (Figs. 3.5 through

3.10), one notices that while the individual contributions to the total
PQ

backscatter cross sections <o  *> are very sensitive to the value of B8
(which determines kd) the value for the total cross section varies slightly
as B increases from 0.1 to 1.0 and insignificantly for B8 > 1.0. This
latter result is shown explicitly in Figs. 3.1la, 3.11b, and 3.llc, where
only the total backscatter cross sections <0PQ> are plotted for g=0.1,
0.25, 0.5, 0.75, 1.0, 1,25, 1.5, 1.75, and 2.0. It was not considered

PQ

necessary to evaluate <o > for B < 0.1 since these results would practic-
ally duplicate those provided by Brown (1978)., In Table 3.1, the com-

puted values for kd (3.26) and ois (3.27) corresponding to values of 8 from
0.1 to 2.0 are listed.

Clearly the above numerical results indicate that from the point of

view of both accuracy (independence of the results on the choice of g or

------------------------------------
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N Table 3.1

N
x3

2

- B ky %%s
1o
f:;: 0.10 0.950 0.0223
o 0.25 0.602 0.0202

0.50 0.426 0.0187
Ay
N 0.75 0.348 0.0177
e 1.00 0.301 0.0171
RN 1.25 0.269 0.0165

. 1.50 0.246 0.0161
3 1.75 0.228 0.0158
32 2.00 0.213 0.0155
",\

:.: Relationship between the parameter B = 4k§<k52(>, the surface
:‘Ez wave number k 4 (3.26) and the mean square slope O:‘S (3.27)
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ka) and computational ease the optimal choice for B is 1.0. This cor-
responds to the choice of k.d = 0.301 (cm—l) and Ay = 20.87 (em) = lo.éhko.

It should be pointed out that for 8 = 1,0 not only does <0PQ> begin to

R2
become significant (particularly in the region between eo = 15° and eo =

350, where specular point scattering and Bragg scattering effects begin to

-8

blend), but the factors ]xR(G°ﬁs)|2 = ¢ ~ and exp(—v%<h§>) are also sig-

PQ,

F and

nificantly different from unity. These factors appearing in <o

PQ,
R Rm

expressions derived by Brown (1978)., The contribution that the term
PQ,

<o respectively and the terms <ot (m > 2) are not present in the

<o R2 makes to the total backscatter cross section is even more pro-

nounced for P$Q since the physical optics approximation for the cross-

PQ>
F

F = 0 for P¥Q, use of the two scale model of the composite surface to

polarized backscatter cross section <o
PQ,

is zero. Moreover, since
<g
compute the cross-polarized cross sections needs to be investigated fur-
ther (see Section 4),.

The small though perhaps significant differences in the full wave

PQ

values for <g *> (the total backscatter cross sections), as B increases

from 0.1 to 1,0 are much smaller than those obtained from Brown's results.

PQ

The reason why <o °> is sensitive to variations in B for B < 1.0 is that
on deriving the approximate physical optics contribution <0PQ>F (3.16)
(associated with the filtered surface hF) from the full wave solution (3.1),

it was assumed implicitly in deriving <on>B (3.30) that the radii of curva-

ture associated with the gsurface hF satisfied the Kirchhoff approximations
for the surface field and also that the individual specular points on the
filtered rough surface hF met the conditions for deep phase modulation;

namely, that distances from the specular points on the surface hF to the
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receiver and transmitter were such that their contributions were dis-
tributed uniformly in phase between -m and w. For 8 < 1.0 the neighbor-
ing specular points on hF begin to merge and contribute more strongly to
the backscatter cross section than when deep phase modulation applies.

For backscatter <0VH> = <0Hv>,and therefore the numerical data for
<0Hv> is not presented. However, <ovv> is significantly different from
<0HH> as 60 + 90. This polarization dependence of <0PP> is missing in
the physical optics results.

3.5 Concluding Remarks

In this paper, extensive numerical results for the full wave back-
scatter cross sections <oPQ> (P,Q=V - vertical or H - horizontal) are
presented. For convenience,and in order to compare the full wave results
with earlier solutions to the scattering cross sections, the full wave
solutions are expressed in terms of a weighted sum of a scattering cross
section <oPQ>F, associated with the filtered surface hF (consisting of

PQ,

the larger scale spectral components) and a remainder term <o R® asso-

ciated with the surface ER (consisting of the smaller scale spectral
components) .

In an attempt to draw more definite conclusions about the choice of
kd (the wavenumber where spectral splitting between the surfaces hF and
ER is assumed to occur), the parameter g = 4k§<3§> (that 1is related to kd)
is varied over a very wide range of values (0.1 < 8 < 2.0). It was not

necessary to consider values of B < 0.1, since these results would practi-

cally duplicate those already provided by Brown (1978). For B > 2.0 the

numerical evaluations become tedious and of no particular value. It is
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:?~ shown that while there were small though significant variations in the

;h values of <0PQ> as B8 increased from B = 0.1 to B = 1.0 the results merged

;? for 8 > 1.0. Thus, from the point of view of computational ease and

”i? accuracy, the choice B = 1.0 corresponding to Ad = 10.44A° is optimal. It

o ° should be noted that in order to derive the physical optics - (specular

'Z: point) contribution to the scattering cross section (associated with the

ﬂE; filtered surface hF) from the full wave solution, it was necessary to

v assume that the radii of curvature criteria (imposed by the Kirchhoff

*E approximations for the surface fields), as well as the condition for deep

¢ phase modulation were satisfied. However, the parameter B is not restric-

a2 ted by the characteristics of the small scale surface. Thus B could be
assumed to be much larger than 0.1 in gross violation of the standard
perturbation criteria without affecting the results for the total scatter-

i i ing cross section. It is interesting to note that for B = 2.0 (Fig. 3.7)

‘53 <0PQ>F is significantly smaller than <0PQ>R for all values of eo including

\ﬁ near normal incidence. Nevertheless, the computed results for <0PQ>

.{: with 8 = 2,0 (the total backscatter cross sections) are in agreement with

?% the corresponding results for 8 = 1.0 where <0PQ>F is the dominant term

;g near normal incidence. This 1s because the full wave approach permits

fR the blending of specular point scattering (from hF consisting of the

i; larger scale spectral components of the surface height) with Bragg scat-

:5 tering (from ER consisting of the smaller scale spectral components of the

surface height). Thus, one cannot arbitrarily neglect the contribution

:Q to <aPQ> associated with the surface HR’ even at near normal incidence.

E: Furthermore, since the physical optics approximation for the cross-

[
\

polarized backscatter cross section is zero, it is necessary to further
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3:‘:'
"'\‘ investigate the use of the two scale model of the rough surface

; to compute <0PQ>, P¥Q.
e %y
'J Although numerical results are presented in this paper only for
o
1y backscatter, the full wave solution (3.1) is suitable for the evaluation
:-‘. of scattering in arbitrary directions. Furthermore, the medium
b~

‘:J" y < h(x,2z) need not be perfectly conducting and the effects of finite
JON

Y conductivity can be considered. The full wave approach also accounts for
-‘r: the scattering of the lateral and surface waves (Bahar 1980a,b) that are
NN

3\ excited over non-perfectly conducting surfaces. The full wave approach
)

'\ can be applied to scattering at low radio wave frequencies as well as

. '.2 at optical frequencies.
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4.0 Computations of Rough Surface Cross Sections That Do Not Involve

Spectral Splitting

4,1 Background

In Sections 2 and 3 the full wave solutions for the scattering
cross sections were applied to two-scale models of composite rough
surfaces. The main purpose of the work reported in these sections
was to compare the full wave solutions for the like and cross
polarized scattering cross sections with the solutions based on the
use of a perturbed-physical optics approach. The question of the
specification of kd’ the wavenumber where surface height spectral
splitting is assumed to occur was also investigated in detail. It
was shown that the full wave solution for the scattering cross
sections can be expressed as a weighted sum of two cross sections. The
first was associated with the filtered surface consisting of the
large scale spectral components and the second was associated with the
surface consisting of the small scale spectral components that ride
on the large scale surface. Provided that the large scale surface
satisfied the radii of curvature criteria (associated with the
Kirchhoff approximations of the surface fields) and the condition
for deep phase modulation, it was shown that the full wave solutions
were Ingensitive to the variations in the specified value of kd.

Since the full wave approach accounts for specular point
scattering and Bragg scattering in a unified self consistent manner,

it is not necessary to spectrally decompose the composite rough
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N surfaces into two surfaces with different roughness scales. Thus
SEE in this section the scattering cross sections for all angles of

o
,‘: incidence are calculated using the undecomposed form of the full

L wave solution.
%J" 4,2 Discussion

'j; On applying the full wave approach in Sections 2 and 3 to

':ﬂ evaluate the like and cross polarized scattering cross sections for
iﬁ two scale models of composite rough surfaces, several assumptions
%ﬁ were made to facilitate the computations. The first assumption was
iﬁ that the large and small scale surfaces were statistically inde-
EE pendent (Brown 1978). It would seem reasonable to make such an

iﬁ assumption if the two surfaces are results of independent processes.
i;;- This would be the case,for example, if the small scale roughness

;E is due to erosion, while the large scale roughness is due to geo-
] physical forces that result in hills and valleys, or as in the case
3:{ of the sea, where the capillary waves are dependent on surface ten-
izg sion while the large scale rough surface is generated by gravity
‘:; waves. For the general case, however, one cannot assume statistical
‘35 independence of the large and small scale surfaces.

}g The second simplifying assumption that was made was that the
:z mean square slope 02 for the total surface was approximately equal
;ﬁ to the mean square slope cgs for the filtered large scale surface.
S: The third assumption was that if the mean square height of the
;} total rough surface is large compared to wavelength, the surface
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]
(. height characteristic function for the total surface 1is negligibly
i small, The effects of these simplifying assumptions on the com-
ET puted results for the cross sections are examined.
. - The physical optics approximation for the cross polarized back-
; scatter cross section is zero. As a result, the cross polarized
: backscatter cross section for the filtered surface is set equal
y to zero when the two scale model is used. However, for backscatter
'5 only,the specular points on the rough surface do not depolarize
: the incident wave. Therefore, the justification for use of the
‘ two-gcale model to evaluate the cross polarized acattering cross
E sections of composite rough surfaces is also examined in this sec-
': tion of the report.

4.3 Application of the Full wave Solution yithout Surface
-
; Decomposition
Z The starting point for this analysis is equation (3.1) for
y the like and cross polarized scattering cross sections of the
E rough surface y = h(x,z)
- 2 =
; P9 :_o _[ ¥ erpl i, (n') o <n"°p3(r'_xf.nilﬁ)> o 2
. n-a
K]
‘5 cexp[iv 4 + iv z ]dx dzd .1
. in which
? ;d - (x—x')ay + (z-z')E - xda + zd 2 (4.2)

-,

is the radius vector between two points on the reference plane (x,z)

[N ¢
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‘::_‘: The vector v is
3 =k (il mvi +vi +va
S o X X yy z 2z (4.3)
- where k  is the free space wavenumber for the electromasnetic wave
:,::: and ﬁi and Ef are unit vectors in the directions of the incident
'::'\:: and scattered wave normals respectively. An exp(iwt) time depen-
. dence is assumed in this work. The symbol <>denotes the statistical
-~
:.;_ average and
*;3::
= “i PQ ko (10P%F) |2, =f =t
——— -— ' R eee o oy
) == <8 exp[ivy(h h')]> = - — P,(n",n lns)p(hx.hz)dhxdhz
o n°ay
£ PQ,-f =1
\l - -
) *Xol{v. ,~v. ) = 1 n - 4.4
R X, ( v y) (n, )xz,(vy vy) (4.4)
M in which
3 -
o n(hx,hz) is the unit vector normal to the rough surface
o'l
“ -
-é. f(x,y,z) = y-h (x,z) = 0 (4.5)
_:} Thus
E'.,:." Vf = nIVfI = 7(y-h(x,z)) = (-hxax+ay-hzaz) (4.6)
A
in which the components of the gradient of h (x,z)
hx = 3h/3x , hz = 3hfdz 4.7)

are random variables and p(hx,hz) is the probability density func-
tion for the slopes hx and hz. The expression for the scattering
cross sections <0PQ> (4.1) accounts for shadowing and
NI NeUR S EREICHE 4.8)
in which Pz(ﬁf.ﬁiﬁ)' is the probability that a point on the rough
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~ surface is both illuminated and visible given the value of the

:j slopes at the point (Smith 1967, Sancer 1968) and Pz(ﬁf,ﬁllﬁs) is

\1

:E its value at the specular points where the unit vector n is given

[ ] by

> - .- _ Bt _-
W n+n = —— =vy/y (4.9)

oy 8 r-lf—-i]

The arguments of the unit step functions S(-a+n) and s@i-n)
) vanish at points of the rough surface where the incident and
3 scattered waves are tangent to the rough surface. Thus
S(-nt*5)= 1 and s(in) = 1.
s s
The characteristic and joint characteristic functions for the sur-

face height h are respectively (Beckmann and Spizzichino 1963)

£ WANEAL N LR

x(vl) - <exp(ivyh)> (4.10)

G and

% xz(vy,-vy) -<exp[ivy(h-h')]> 4.11)
2 It is assumed in this work that the probability density function
l\; for the surface height is jointly Gaussian. Thus

~l

A x(v,) = exp(-vi<n®>) (4.12)

y y

;: and

“ 2_.2 2

o -v_) = exp(-v_<h“> - v’<hh'> 4.13
: Xz("y' vy) xp ( y vy ) ( )
- .
N where <h2> is the mean square height and <hh'> is the surface

)
N height autocorrelation function. The coefficients DPQ depend expli-
¥

™ citly upon the polarization of the incident wave (second

X

.

~Q

~l
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superscript Q=V - vertical, Q=H - horizontal) and the polarization
of the scattered wave (first superscript; P=V,H) the direction of
the incident and scattered wave normals Hi and ﬁf respectively,
the unit vector n normal to the rough surface and the complex per-
meability and permittivity of the medium of propagation
respectively (Bahar 198la, see Section 1l). On deriving (4.4) it
is assumed that the rough surface is Gaussian and stationary, thus
the surface height h and slopes (hx’hz) are statistically inde-
pendent (Brown 1978, Longuet-Higgins 1957). It is also assumed
that for distances l;dl less than the surface height correlation
distance, lc,ﬁ(hx,hz) = ﬁ'(hx'hz'). It has been shown that if
the principal contributions to the scattered fields come from
specular points on the rough surface (n = Es), (4.1) reduces to the
physical optics solution for the scattering cross section. If,
however, the roughness scale of the surface is small compared to the
wavelength (ki<h2><<1) and the surface slopes hx and hz are very
small, (4.1) reduces to the perturbation solution for the scatter-
ing cross sections (Rice 1951), Thus,in this case Bragg scatter-
2 ing is accounted for and the backscatter cross sections for graz-
\: ing angles are strongly dependent on polarization. In Section 2

a two scale model is adopted to determine the corresponding full

- wave solution for the scattering cross sections. To facilitate
f; the application of the two-scale model it is assumed that the
Ry

“~ -

= small scale surface hR and the large scale filtered surface hF
>

\.

R R e S A e
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! are statistically independent (Valenzuela 1968; Wright 1968; Brown

'3 1978). This assumption is reasonable if the surfaces hp and h_

\g are results of independent processes (Brown 1978) as for example, i
I . when the small scale roughness is due to erosion while the large

;E scale roughness is due to geophysical forces that result in hills

}; and valleys or as in the case of the sea, where the capillary

‘i waves are dependent on surface tension while the large scale sur-
;E' face is generated by gravity waves. In general, however, it

% cannot be assumed that the large and small scale roughness of the
'; surface are statistically independent. 1In the general case, if the
E two scale model is used to analyze the problem it would be neces-

‘§ sary to know the large and small scale surface height joint proba-

i\ bility density function for two adjacent points on the rough sur-

:3 face to determine Xo (4.11) alone.

f: Since the full wave solutions account for both Bragg scatter

5 and specular point scatter in a unified, self consistent manner,

gﬁ in this section solutions for (4.1) are developed without adopting
‘5 a two-scale model of the rough surface.

J In Sections 2 and 3 it has been noted that the physical optics
.i approximation for the cross polarized backscatter cross section is

'g zero (<0PQ>F = 0 for P ¥ Q) .However, even the large scale fil-

:. tered surface will depolarize the backscattered field at non-

S specular points on the surface. Therefore the present analysis

i should shed more light on the evaluation of the like and cross

F
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( . polarized backscatter cross sections and the suitability of the
L~
itc: two scale model even if it can be assumed that the large and small
%9
S scale surfaces are statistically independent.
o Assuming that k§<h2> << 1 and |x|2 << 1, the scattering cross
>
?f; section (4.1) can be expressed as follows:
i f\
e 2
PQ PQ,-f -1}
< > =T *(n ,n V =V ) - v
- g ( ’ zw [Xz( yl y) IX( y)l ]
i
:}5 -exp[ivxxd + ivzzd]dxddzd
e = 1qE, Y @ GfLaLm) (4.14)
'_‘c::
R N
§:§5 in which I*Q is defined by (4.4) and Q , the two dimensional
Er
1PN Fourier transform of (x2 - lez) depends on the surface height
o correlation coefficient R
;-.'_‘\- R = <hh'>/<h2> . (4.15)
R
oI Using the notation of Rice (1951), the surface height spectral
';1; density function W (vx,vz) is related to the two dimensional Fourier
A ,\.‘)
‘::: transform of the surface height autocorrelation function.
N 1
» - e '
- W(vx,vz) wz -/;hh > exp[ivxxd + ivzzd]dgdd;d (4.16a)
:.'.":: and
n_::::‘ w(vx)vz)
. ¢ \J - S S ——————— - -
‘:23 <hh'> 2 exp [ iv_x, ivzzd] dv_dv, (4.16b)
::7 Thus assuming that the rough surface is Gaussian and statiomary, to
oo
‘%:. compute the scattering cross sections (4.14) it is necessary to
\' \.
) |
:f} prescribe the two dimensional slope probability density function |
A \'
)

p(hx,hz) (4.4) and the surface height autocorrelation function or
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its Fourier transform (the surface height spectral density function).
Since it is assumed in this work that the surface is isotropic,

<hh'> depends only on the distance ry - ];d] between the two points

. (x,h,z) and (x',h',z') on the rough surface. Thus
w(vxz)
' -
<hh’>= 2w 4 Jo (vxzrd)vxzdvxz 4.17)
d

= 2 w(vxz)

<h™> = 2% - Vv, v (4.18)
XZ  XZ

in which Jo is the Bessel function of order zero and

v2aeos? ‘ (4.19)

Xz X z
Since

IM0) = [a%3 (v )/drd] =P /2 (4.20)

o o' 'xz' d d rd-e Xz *

R"(0) = o2/2<h%> = ~o%/<hl> = ~o%/<n’> (4.21)
where

W(v_ )
2 Xz 3
os - ZWI—T— vxzdvxz (4.22)

is the total mean square slope while ci and q: are the mean square
slopes in the x and z directions. Thus for small values of r d the
correlation coefficient is given by (Beckmann and Spizzichino 1963,

Brown 1978)

P 2 2P A S

. 2,2 _ 22, .2
R(rd) =1 - rd“‘c 1 - cxrd/2<h > (4.23)

T
L

o]

where f.c is the correlation distance.
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[ 4.4 Illustrative Examples

..‘

o For the following illustrative examples the following special
N

§: form of the surface height spectral density function is chosen

B (Brown 1978)

Gt/ atnd* K<k

Y Wv_ ,v.) = (2)S(v v)=}T - c

- x''z L x’'z

N 0 k > kc (4.24)

where W is the spectral density function defined by Rice (1951)
and S is the corresponding quantity used by Brown (1978). For the

above isotropic model of the ocean surface

;'6‘3".‘-.’

B = 0.0046 (4.25a)

-?‘ k2 - v2 + v2 (cm)-2 » k =12 (cm) -1 (4.25b)
o x z c
M

. -

- K = (335.2V4)-% (cm) 1 , V=4.3 (m/s) (4.25c)
f\: In (4.25c) V is the surface wind speed. The wavelength for the
fﬁ electromagnetic wave is

S -

2 A= 2 (e, Gk = 3.1416 (em) ) (4.26)
- Substituting (2.24) into equation (4.18) for the mean square height
\.‘

ol of the rough surface yields

o 4

N 2 K

2 B [ 1 1 K ]
<h®> = = - + + ——
s 2 3K2 k§+K2 (k2+K2)2 3(ki+K2)3 (4.27)
-.:: 6 ¢
o Bk
- <
6&2(K2+k2)3

Thus if the spectral cut-off point kc (Brown 1978) is much larger

A
[ ]
5& than k (as for the illustrative example (4.25))
X :
x a? = B (4.28)
6
K
;\_'
‘»:',
l-.’
%
.‘..'
",

X G
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s
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The surface height autocorrelation function <hh'> (4.17) can be

expressed in closed form for kc + o ., Thus the surface height

correlation coefficient R(rd) (4.15) is given by (Miller et al 1972)

R(ry) = [1 +—é— (Krd)2 Jkr gk, (cx ) - (Krd)zxo(xrd) (4.29)

in which Ko and K1 are the modified Bessel functions of the second

kind and of order zero and one respectively. Since kc >> K and kc > ko

the above closed form expression is used for R in this illustrative

example. The total mean square slope of the rough surface is

obtained on substituting (4.24) into (4.22).

2. 2
02-3 .].'.m kc+K _ll.;.é Kz -3 '(4 +l 6
s 2 &2 12 " 2 k§+K2 4 (k§+x2)2 6 (ki+K2)3
. k(2:+.<2 k§(6.<2+15.<2k§ + 11K
=B |=44n -~ - (4.30)
2 2 2 .23
12(x“ + kc)
Thus for kc >> K
2 2
kT + «
2 1 c 11
o = B [E- n KZ - -i-z-] (4.31)

For typical sea surfaces the relative complex dielectric coefficient
at 1.5 GHz is given by (Stogryn 1971)

e = 42 - 139

r
The slope probability density function p(hx’hz) is assumed to be

Gaussian, thus

2
h® + h
1 X z
p(hi'hz) - 3 exp | - 3
ma’ o
8 8

------------------------------
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In Fig. 4.1 the like polarized backscatter cross section <¢g > is

L R
ULy

e
e,

i
plotted as a function of the angle of incidence 60 using the expres-

o sion derived in Section (4.3). These results are compared with the

)

two scale full wave results (Sections 2 and 3) based on the choice
of kd (the wavenumber where spectral splitting occurs) correspond-
ing to B = 1. (see Section 2 equations (2.32a), (2.32b) and (2.32c)).
Both results yield the same general dependence of <ovv> on the

angle of incidence. The small difference in level is primarily due
to the fact that in (4.3) the mean square slope oz of the total
(unfiltered) surface is used,(4.31), while in (2.32) the mean square

slope ags for the filtered surface hF is used (3.27). 1t should be

noted that in deriving the expressions for the scattering cross
sections based on the two-scale model (2.32), it was assumed that
cés = ai. Thus the results based on (4.3) are more accurate.

Furthermore, on deriving (2.32), using the two-scale model, the

quantity x(vy) (4.12) is assumed to be negligible compared to

2
xz(vy,-vy) (4.13) for r <4 . Since 4ko<h > = 3468 for this illus-

d
trative example, the resulting approximation is very good except
very near grazing angles. 1In Figure 4.2 the corresponding results
are given for the horizontally polarized backscatter cross sections
<0HH>. It is interesting to note that the full wave solution (4.3)
ylelds the proper polarization dependence of the scattering cross

sections for all angles of incidence without use of a two scale

model since it accounts for specular point and Bragg scattering in a
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unified,self consistent manner. 1In Figure 4.3 the cross polarized

A
‘?E backscatter cross sections <OVH> = <0Hv> are plotted as functions
zg; of the angle of incidence. Here too,both the solutions based on
h\; . the two scale model as well as the solution derived in this sec-
;Eg tion are presented. Unlike the solutions for the like polarized
gjz backscatter cross sections <0PP> (P=V,H), the solutions for the
“ cross polarized backscatter cross sections differ significantly,
'é;g especially near normal incidence where the difference in level is
3;5 about 15db, This very significant difference 1s due to the fact
,:‘ that the physical optics approximations for the cross polarized
E; backscatter cross section is zero (Brown 1978, see Section 2).
-~
‘is For backscatter the surface at the specular points is normal to the
" incident wave. At these stationary phase points no depolarization
:iz occurs. However, since depolarization occurs at the non specular
~
Pui points of the filtered surface, the physical optics approximations
" for the cross polarized backscatter cross section is not valid.
f?i It is interesting to note that for the two scale model at normal
:ﬁ incidence
._ <0PP>/<0PQ> = 47db (P£Q)
FES However, using the full wave solution (4.3)
L <0 T>/<c’% = 3lab  (PAQ)
f-, The latter results are significantly more in line with published
'E% experimental results*(Long 1975).
Eﬁ *See also NRL report on "Airborne Radar Backscatter Study at four
= frequencies', NRL Prob R0Z-37, SER:8560, August 1966, by J.C.Daley
o
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ot 4.5 Concluding Remarks
? It is shown in this section that two-scale models of rough surfaces
fé can be adopted to obtain solutions for the like polarized backscatter
?; cross sections that are in reasonably good agreement with the full wave
- . solutions derived in this section. However, the two-scale model cannot
ﬁ be used to evaluate the cross polarized backscatter cross sections. The
‘g significant differences between the solutions derived in this section

> and those based on the two scale models (Section 2 and 3) are primarily
;} due to the fact that the physical optics approximation for the cross

ZE polarized backscatter cross section (associlated with the large scale

i filtered surface) is zero. For backscatter, the specular points lie

7 on portions of the rough surfaces that are perpendicular to the incident
: wave normal Hi (Es = Hf = —Ei). At these specular points, the back-

scattered waves are not depolarized. However at non-specular points oi

; the rough surface, the backscattered waves are depolarized (Bahar 1981b).
d

.j Thus it is important to note that even if a surface satisfies the radii

of curvature criteria (associated with the Kirchhoff approximations

ﬁ for the surface fields), the physical optics approximations for the

2 scattered fields may not be valid unless for the given incident and

- scatter angles specular points exist on the surface and

% significant contributions to the scattered fields come from these

? stationary phase-specular-points of the surface. This explains why the
ji physical optics approximations for the like polarized backscattered

3 cross sections are not sultable for grazing angles even if the surface
.i meets the radii of curvature criteria associated with the Kirchhoff

approximations.
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= There are additional important reasons for preferring to use the
;

- analysis developed in this section over those that are based on two-
3 .‘
;Q scale models of rough surfaces. Firstly, if the two-scale model is
o

™~
N used, it is necessary to assume that the large and small scale surfaces
s§ are statistically independent (Brown 1978), Secondly, even if the

_J assumption of statistical independence is acceptable, when the two-scale

f model is used, it is still necessary to judiciously specify kd (where

Lﬂ spectral splitting is assumed to occur). These problems do not arise
-i when the unified full wave formulation is used to evaluate the scatter-

- ing cross sections,

sq While the preliminary results reported in this section are very

‘l

‘.d

> significant in that they explain why the earlier solutions based on

e

3 two-scale models of composite rough surfaces cannot be used to derive

k the cross polarized backscatter cross sections, more work needs to be

N

ﬁ done to apply the full wave solutions to more general (non-Gaussian,

’ anisotropic) models of rough surfaces.
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;E 5.0 Concluding Remarks — Summary of Research During the Next Six

5{ Months - Proposed Future Investigations.
{E; During the past two years the following principal contributions
‘33 have been made with regard to the application of the full wave approach
.\4 . to rough surface scattering.

;: (a) The stationary phase approximation of the full wave solu-
A%E tion is precisely equal to the physical optics solution for the

SN scattered fields. Thus the full wave solution reduces to the physical
55 optics solution when the expression for the local normal to the rough
:E surface is replaced by its value at the stationary phase (specular)

= points on the surface. The questions surrounding the different exist-
- ing forms of the physical optics solutions and the associated "edge
kz term”" have also been resolved.

f:. (b) The full wave solution reduces to the geometrical optics

_E; approximations when the surface integrals are evaluated analytically
:; using the steepest descent method.

. (c) The small scale surface roughness and small slope approx-

i; imation of the full wave solution is precisely equal to the perturba-
.2 tion solution for rough surface scattering. Thus the full wave solu-
<

: tion reduces to the perturbation solution when the expression for the

§€ local normal to the rough surface is replaced by the normal to the

{; reference plane.

t? (d) Apparent discrepancies between the physical optics and per-
f% turbation theories have been resolved. Both theories are sound if

jzi they are strictly applied to surfaces that satisfy the respective

Eﬁ assumed restrictions. Physical optics is applicable if the principal
o

%
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contributions to the scattered fields come from specular (station-

ary phase) points on the rough surface. Thus in order to apply
the physical optics appreach to rough surface scattering it is not
sufficient to satisfy the radii of curvature criteria associated
with the Kirchhoff approximations for the surface fields.

(e) The full wave approach provides the proper limiting forms
for the far fields scattered at near grazing angles. It is shown
that as the incident and scattered fields approach grazing angles
the plane or spherical wave approximations for the far field are not
suitable. In this case on evaluating the integrals for the far fields
(in the wavenumber space) it is necessary to account for the fact
that for grazing incident and scatter angles, poles are located in
the vicinity of the saddle points., Thus it is shown that for grazing
angles the range dependence of the fields is given by the error func-
tion complement and the full wave solutions exhibit the proper transi-
tion in the neighborhood of the shadow region.

(f) The full wave approach was applied to two-scale models of
rough surfaces and compared with earlier solutions based on the composite,
two-scale description of rough surfaces. The full wave solutions are
expressed as a weighted sum of two cross sections, the first associated
with the filtered surface consisting of the large scale spectral com-
ponents of the rough surface and the second associated with the surface
consisting of the small scale spectral components. Thus both specular
and Bragg scattering are accounted for. The weighting function multi-

plying the physical optics cross section associated with the filtered

surface accounts for the degradation of the cross section in the

-------
o



e T el i S a0 A ‘B a0 AL AR Rt i ue et e i SRS S S M A Il e S WA S A d_"-,r~~.${.'_-.'-qlr-‘r..r#

121

specular direction due to the presence of the small scale surface
that rides on the filtered surface. It is shown that if the
specification of the wavenumber kd (where spectral splitting is
assumed to occur) can be based solely on the characteristics of

the small scale surface and if the mean square slopes of the rough
surface are very small, the full wave solution is in agreement with
solutions based on a perturbed physical optics approach (Brown, 1978)
or are based solely on physical considerstions (Wright, 1968;
Valenzuela, 1968). If the mean square slopes are not very small,
Valenzuela's solution is not in agreement with Brown's solution.

It is shown through the use of the full wave approach, that the
difference is due to the fact that in Brown's work the correlation
distance for the small scale surface is measured in the reference plane
rather than along the large scale surface as in Valenzuela's work.
Furthermore, in Brown's work the small scale surface height is

measured perpendicular to the reference plane rather than normal

to the filtered, large scale surface. This is contrary to Burrows'
perturbation theory upon which Brown's solution is based.

(g) The controversy between Brown on the one hand and Hagfors
and Tyler on the other regarding the specification of the wavenumber
kd where spectral splitting is assumed to occur is also resolved
through the use of the full wave approach. As noted above, Brown

' states that the specification of kd must be based solely on the

characteristics of the small scale surface while Hagfors and Tyler

specify kd on the basis of the characteristics of the large scale
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EE} surface. Since the full wave approach accounts for specular point

{5 and Bragg scattering in a uniform self consistent manner, kd may

.Sg be specified arbitrarily. Provided that the filtered large scale

;E% surface satisfies both the radii of curvature criterion as well as

_ the condition for deep phase modulation, the scattering cross sections
:: based on the full wave approach are shown to be insensitive to the

.E: specific choice of kd. It is shown that if one uses the two-scale

) ; model rough surfaces it is judicious to specify kd such that

;S B = 4k§<h§> = 1. However since the physical optics approximation

éﬁ for the cross polarized backscattered cross sections are zero, the

f; two-scale model can only be used to evaluate the like polarized back-
‘§E§ scattered cross sections.

lié (h) A unified full wave approach has been developed to obtain

. the scattering cross sections. Since this unified approach does

N

ig not adopt a two-scale model of the rough surface, it does not

;:% artificially separate specular point scattering from Bragg scattering.
A Furthermore, using this uniform approach the question surrounding the
'Eg specification of the wavenumber kd does not arise nor is it necessary
-:: to assume that the large and small scale surfaces are statistically
- independent. It is shown using this approach that the two-scale model
.\..

ﬁ;i may be adopted to evaluate the like polarized cross sections, but that
i;i it should not be used to ewvaluate the cross polarized backscatter

T_' cross sections. The physical optics cross section associated with

:& the filtered surface vanishes for backscatter because the specular

2- points are located on regions of the surface that are perpendicular
%
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JEEE; to the incident wave. Thus the backscattered fields are not
fuﬁ, depolarized from specular points. For backscatter, depolarization
gﬁ; is due to scattering from non-specular points. Therefore, as shown
Eﬁ; through the use of the full wave approach, the backscattered fields
WY . are depolarized even by the large scale filtered surface-

?;. During the next six months (the final term of the current con-
:; tract) the following phases of our research will be developed further:
W (a) Extension of the preliminary investigation using the unified full
'é:ft wave approach (see Section 4).

,E%S (b) Investigation of the dependence of the scattering cross section
ftg upon the complex permittivity characterizing the rough surfaces.

?i;i (c) Research reported in the Interim Technical Report on "Scattering
E;;; Cross Sections for Composite Models of Non-Gaussian Rough Surfaces for
:€t€ Which Deccrrelation Implies Statistical Independence" revised and re-
i;% submitted for publication in scientific/technical journals.

‘iﬁé (d) Computer programs updated to reflect recent advances in the

:i) analytical-numerical work. A detailed listing of the computer programs
:;: will be presented in the final report. The documentation will also
e

E;;i include flow charts and relevant comments for the convenience of the
ol user.

;iﬁ It is proposed that the following topics be considered for

E;; future investigation as an extension of the current contract:

;%; (a) Scattering and depolarization due to rough surfaces covered by
fﬁ? vegetation

Ziz (b) Scattering due to variations in the complex permittivity, e(r),
:k; that characterizes the rough surface (mixed path propagation using
:;&3 the full wave approach)
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’{: (c) Application to synthetic aperture radars

|

o (d) The dependence of the scattering cross sections on different
o, )
> e

S rough surface height spectral density functions

‘f? (e) Extension of the research on scattering by non-Gaussian rough
% surfaces

L

i: (f) Application of the full wave approach to anisotropic rough

5

NN

" surfaces.

The extension of the current research could be conducted over

PO Y

a 30-month period at approximately the current level of support. The

e I'H.J "\
RRX

principal investigator will consider additional applications that are

> of interest to the contractor.
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